4738
Views & Citations3738
Likes & Shares
CEI Moncloa as the Origin of this Interdisciplinary Research
The main outcome of the think tank was the realisation that there was a need (both in biomedicine and the Agrofood industry) for low-cost real-time non-destructive methods for detecting peanut traces in powdered food ingredients such as flour, milk and cocoa. According to IUPAC[1], "trace" means any element having an average concentration of less than about 100 parts per million atoms (ppm) or less than 100 ug g-1. One of the relevant issues for the development of a new procedure is the need of a reliable reference procedure which should be at least one order of magnitude more sensitive than the proposed one. In this research the reference procedure was developed (prior to CEI_Moncloa) by the UCM research group (TRADETBIO) and consisted of both PCR and real-time PCR [1,2] for the quantification of peanut traces with 0.1 ppm resolution.
On the other hand, the spatial resolution of the Hyper Spectral images (HSI) images proposed by UPM (LPF_Tagralia) was identified as the cornerstone for the detection of peanut traces, therefore at the very initial steps the optimal configuration of HIS was set as to characterize particles of 70um size.
Selection of Wavelength Range
VIS and NIR spectroscopy and HIS have been evaluated in consecutive trials [3-9] using IRMM[i]-481e originating from Jumbo Runners, USA to guarantee the highest variability among peanut origins and treatments. The main conclusion being that VIS is sensitive to peanut variability, and does not provide sufficient specificity regarding milk and flour, based on results validated with commercial peanut samples (Figure 2). On the other hand, NIR spectroscopic imaging provides characteristic bands for peanut detection: 950 nm arising from O-H bond, 1212 nm arising from 2nd overtone of the C-H stretch of CH2group and 1450 nm arising from the 1st overtone of the O-H stretch, while HIS measurements at 70 µm resolution has shown the feasibility to detect up to 100 ppm (0.01 %) of peanut traces in any of the proposed powder foods (Figure 3).
SPECIFICITY ANALYSIS
Detecting peanut traces is relevant when it is sufficiently specific. Therefore, it is mandatory to avoid both false positives and false negatives. To this end, 49 commercial samples of cereals, legumes, oilseeds and nutswere obtained from local market of Madrid, Spain. All samples were ground with precautions to avoid cross-contamination. After grinding, all powdered food sampleswere sifted by passing through a sieve of 212 um, since diffuse reflectanceproperties are dependent on the size of particles, non-uniformity in size can cause scatter effects in the spectra. In this case the wavelength range proposed included all NIR data, except for the bands with highest sensitivity to peanuts. The result (see procedure in Figure 5a), attained for calibration and external validation [10,11] showed that the greatest challenge was in isolating peanuts from pine nuts. Figure 4b provides an indication or the most relevant wavelength bands for specificity.
Finally, it was necessary to determine whether our results were reproducible irrespective of the instrumental platform, a hypothesis which was dismissed after initial trials at the transcontinental level [12]. Therefore the development of 
Prospective of Use for the Agro-Food Industry
The main conclusion of nearly a decade of research is that low-cost non-destructive NIR multispectral equipment associated with corresponding chemometric approaches should be commercially available in the near future, as derived from our AECOC[1] award in 2016. This technology can be complemented with real-time PCR when required with a highly significant reduction in cost, since it will only be used for contamination levels below 100ppm (0.01 %).
ACKNOWLEDGEMENTS
This research was financially supported by IDEAS http://www.idt.mdh.se/ideas/ and INDIA4EU2 project of Erasmus Mundushttp://www.india4eu.eu/ and PICATA of the MoncloaCampusof International Excellence http://www.campusmoncloa.es/en/calls/picata.php (UCM-UPM, 2012).
- Maria Lopez-Calleja I, de la Cruz S, Gonzalez I,
     Garcia T, Martin R (2014) Survey of undeclared allergenic pistachio
     (Pistaciavera) in commercial foods by hydrolysis probe real-time PCR. Food
     Control 39: 49-55.
 - Maria Lopez-Calleja I, de la Cruz S, Pegels N,
     Gonzalez I, Garcia T, et al. (2013) High resolution TaqMan real-time PCR
     approach to detect hazelnut DNA encoding for ITS rDNA in foods. Food Chem
     141: 1872-1880. 
 - Mishra P, Barreiro Elorza P, Roger JM, Diezma
     Iglesias B, HerreroLangreo A, et al. (2014) Detection of peanut traces in
     wheat flour through NIR hyperspectral imaging spectroscopy. Hyperspectral
     imaging conference. Ricoh arena, Coventry, United Kingdom.
 - Mishra P, Roger J-M, Barreiro Elorza P, Diezma
     Iglesias B, HerreroLangreo A, LleóGarcía L, et al. (2014) Application of
     Improved Direct Calibration for Hyperspectral image processing: Detecting
     peanut traces in wheat flour. Food Analysis Congress, Barcelona, Spain.
 - Mishra P, Herrero-Langreo A, Barreiro P, Roger
     JM, Diezma B, et al. (2015) Detection and quantification of peanut traces
     in wheat flour by near infrared hyperspectral imaging spectroscopy using
     principal-component analysis. J Infrared Spectroscopy 23: 15-22. 
 - [Mishra P, HerreroLangreo A, Barreiro Elorza P,
     Roger J-M, Diezma Iglesias B, et al. (2015) Hyperspectral to multispectral
     imaging for detection of tree nuts and peanut traces in wheat flour. J
     Spectral Imaging 4: 1-9. 
 - Mohamad SNH, Ghosh S, Mishra P, Barreiro Elorza
     P, Diezma Iglesias B. (2015) Star dust memories, or how to detect allergen
     traces in powder foods. VII Congreso de EstudiantesUniversitarios de
     Ciencia, Tecnología e IngenieríaAgronómica. Madrid, Spain.
 - Ghosh S, Domínguez TRC, Diezma B, Lleó L,
     Barreiro P, et al. (2015) VIS/NIR spectral signature for the identification
     of peanut contamination of powder foods. AgricEngInt J 17: 310-329.
 - Cuadrado Dominguez TR, Ghosh S, Barreiro P, Lleo
     Garcia L, Diezma B, et al. (2014) VIS-NIR spectroscopy for the detection
     of peanuts traces in powder food. In: Tellez FA, Rodriguez AM, Sancho IM,
     Robinson MV, RuizAltisent M, Ballesteros FR, Hernando ECC, eds. VII
     CongresoIbérico de Agroingenieria y CienciasHorticolas: Innovar y
     Producirpara el Futuro Innovating and Producing for the Future. Madrid,
     Spain.
 - Mishra P, Cordella CBY, Rutledge DN, Barreiro P,
     Roger JM, et al. (2016) Application of independent components analysis
     with the JADE algorithm and NIR hyperspectral imaging for revealing food
     adulteration. J Food Eng 168: 7-15. 
 - Ghosh S, Mishra P, Mohamad SNH, Martin de
     Santos R, Diezma Iglesias B, et al. (2016) Discrimination of peanuts from
     bulk cereals and nuts by near infrared reflectance spectroscopy.
     BiosystemsEng 151: 178-186. 
 - Cuadrado Dominguez TR, Barreiro Elorza P,
     LleóGarcía L, Ruiz F, et al. (2016) Prospective of NIR Calibration
     transfer need for detecting peanut traces in powder foods: a
     transcontinental approach. 4th CIGR International Conference of
     Agricultural Engineering (CIGR-AgEng2016). Aahrus University, Denmark.
 
QUICK LINKS
- SUBMIT MANUSCRIPT
 - RECOMMEND THE JOURNAL
 - 
            SUBSCRIBE FOR ALERTS
 
RELATED JOURNALS
- Journal of Microbiology and Microbial Infections (ISSN: 2689-7660)
 - Proteomics and Bioinformatics (ISSN:2641-7561)
 - Advances in Nanomedicine and Nanotechnology Research (ISSN: 2688-5476)
 - Journal of Genetics and Cell Biology (ISSN:2639-3360)
 - Journal of Agriculture and Forest Meteorology Research (ISSN:2642-0449)
 - Journal of Veterinary and Marine Sciences (ISSN: 2689-7830)
 - Journal of Biochemistry and Molecular Medicine (ISSN:2641-6948)
 

					    
					  
				




