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ABSTRACT 

HIV-1 envelope glycoprotein (Env) undergoes extensive post-translational glycosylation modifications cloaking the entire 
exposed Env surface with an assortment of high mannose, hybrid-, and complex-types of N-linked glycans (NLGs). This high 
density of NLGson HIV Env act as pathogen-associated molecular patterns (PAMPs) that enables the virion interaction with 
the host soluble and membrane bound carbohydrate-binding proteins (CBPs) particularly c-type lectin receptors (CLRs). 
CLRs with very fine and precise specificity to interact with the mannose rich glycans expressed on Env are expressed 
constitutively by various antigen-presenting cells (APCs) strategically located within the sexual route of virus transmission. 
Many of these CLRs like Langerin, DCIR, DC-SIGN, Mannose receptor (MR), BDCA2 and SIGLEC-1 play a very 
important role in the recognition, capture and dissemination of the virus within the host. The innate immune cells commonly 
use the CLRs to capture and internalize HIV for destruction and antigen presentation to T cells. However, HIV evades this 
CLR-mediated cellular degradation machinery and rather exploits it for transmission to CD4 T cells, the main cell types that 
host the robust and productive HIV replication. It is not known what determines the fate of virus whether being shuttled to 
degradative or trans-infection pathway of APCs. In this mini-review we address the relative importance of Env glycan 
composition and heterogeneity for HIV-1 transmission via the host membrane-associated carbohydrate-binding lectins 
particularly DC-SIGN and fate of virus being taken up by the cells expressing these CLRs. 
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INTRODUCTION 

Human Immunodeficiency Virus 1 (HIV-1) is the causative 
agent of Acquired Immunodeficiency Syndrome (AIDS). 
Despite continued and extensive research efforts, there is 
still neither a vaccine nor a cure for HIV/AIDS. This 
justifies a continuous search for novel and effective 
strategies for the effective treatment of this dreaded 
infection. The envelope glycoprotein (Env) like other 
enveloped viruses is the only molecular entity visible on the 
surface of HIV-1, embedded into the host derived lipid 
bilayer, mediating the first steps of cell attachment and entry 
through the primary receptor CD4 and co-receptor 
CCR5/CXCR4. The HIV-1 Env spike theoretically is the 
exclusive component of virus accessible to anti-HIV-1 
neutralizing antibodies, thus, Env has been a target of 
intense research as a vaccine immunogen. Being central to 
viral pathogenicity and primary target of host immune 
response, the virus has developed extremely sophisticated 
mechanisms to shield Env spike glycoproteins, rendering it 

somewhat refractive to combating host defensive responses. 
HIV-1 Env is one of the known proteins with the highest 
genetic and antigenic variability. The distal most surface of 
HIV-1 Env is the main site of recognition by host receptors, 
which is decorated with poorly antigenic hypervariable loops 
(V1-V5). In addition, the Env glycoprotein (gp120/gp41 
heterotrimer) is one of the most heavily glycosylated 
proteins found in nature, which is extensively covered with 
about 91 tightly packed potential N-linked glycosylation  
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sites contributing approximately to 50% of the Env 
molecular mass [1-4]. The coating of the Env’s most 
exposed and antigenically vulnerable surface with poorly 
antigenic V1-V5 hypervariable loops, together with coating 
by extraordinary dense glycans which further shield the 
underlying antigenic surface, play a key role in the 
determination of Env structure and epitope exposure, which 
consequently affect the antigenicity, immunogenicity, 
antibody neutralization, infectivity and receptor binding [5-
11]. This type of architecture of the Env with higher levels 
of variability and glycan shield is the strategy to escape the 
host selection pressure. However, this unusual extensive 
degree of HIV-1 Env glycosylation, taken as an 
immunologically silent shield, masking the preserved 
functional sites on the HIV-1for more than a decade, has 
emerged as an amazing target for recognition by broadly 
neutralizing antibodies (bnAbs) [12,13].  

HIV INTERACTION WITH INNATE CELLS 

Besides protection by formation of immunologically silent 
glycan shield, the HIV-1 has evolved to use these glycans to 
facilitate its infection of host. There is growing evidence that 
Env also plays a major role in the viral capture, transmission 
and dissemination during early stages of HIV-1 infection by 
hijacking the natural functions of the cells of innate immune 
system, the Langerhans Cells (LCs), Dendritic Cells (DCs) 
and macrophages, which are strategically located at all the 
entry sites like epidermis, mucosa, sub-mucosa, lymphoid 
and circulatory system to facilitate optimal interaction of the 
virus during sexual transmission, which is the most common 
cause of HIV infection [14,15]. The enigmatic features of 
these innate cell interactions with Env are mediated 
primarily by the membrane bound c-type lectin receptor 
(CLRs) family like Langerin, DC immunoreceptor (DCIR), 
DC-specific ICAM-3 grabbing non-integrin (DC-SIGN),
Mannose receptor (MR), blood DC antigen 2 (BDCA-2) and
Sialic acid-binding immunoglobulin-type lectins (SIGLEC-
1), the most important CLRs which recognize exclusively
the glycans on the surface of HIV-1 Env [16-22]. The innate
cells and the CLRs they express, are spatially and temporally
distributed along the sexual transmission pathway to
generally form the first line of defense and perform
differential functions leading finally to viral internalization
and endosomal degradation for efficient antigen 
presentation, and modulate TLR-induced cytokine 
expression to enhance the infection of HIV.

C-TYPE LECTIN RECEPTORS

Carbohydrates are the natural ligands of CLRs. The CLRs 
recognize specific carbohydrate structures by means of one 
or more carbohydrate recognition domains (CRDs) and are 
grouped on the basis of the presence of a conserved 
structural motif in their CRDs. Various CLRs have 
distinguishable carbohydrate specificity, which are related to 
their amino acid sequence in their respective CRDs. The 
innate (DCs and macrophages) cell CLRs primarily interact 

with pathogens via the recognition of mannose, fucose and 
glycan carbohydrate structures. The HIV Env is known to be 
having highest glycan content and in particular has a very 
high proportion, ̴approximately 98% of glycans on native 
Env, as immature, unprocessed Man5-9GlcNAc2 type N-
glycans, while the fully processed mature 
GlcNAc2Man3GlcNAc2 and the GlcNAcMan5GlcNAc2 
containing N-glycans representing only upto 2% [5,19]. 
Together, this makes HIV-1 a susceptible target of these 
CLRs that recognize mostly high mannose type glycans 
[19,23,24]. Several of the CLRs encountered by HIV-1 in 
the sexual route like DC-SIGN, MR, Langerin and BDCA-2, 
exclusively recognize the high mannose glycans on gp120 of 
HIV-1, thus enhancing the recognition and capture of HIV-1 
on these cells. These cells are potent antigen presenting cells 
that up-take the pathogens, process them and readily migrate 
to lymph nodes to present the antigen in conjunction with 
MHC molecules to the naïve CD4+ T-cells. These events are 
anticipated to play essential role in the initial events of HIV-
1 transmission by transporting the virus from the peripheral 
mucosa to lymph node, the place with concentrated number 
of CD4+ T-cells, making the interaction of virus with the T-
cells favorable with its ultimate targets [25-27]. 

INTERACTION OF HIV-1 WITH ANTIGEN 
PRESENTING CELLS AND SUBSEQUENT FATE OF 
VIRUS 

There are two ways DCs direct the transmission of HIV-1 to 
CD4+T cells: DCs after capturing virus by CLRs, transfer 
captured virus in the absence of productive infection, which 
is referred to as in trans-infection or it endocytoses the virus 
within proteasome-resistant compartments in which the 
infectious virus is prevented from degradation and are 
released intact to infect the target cells (Figure 1) [28,29]. 
There are mounting evidences supporting the hypothesis that 
this hijacking of natural functions of DCs, degradation and 
presentation of antigens, by HIV-1 is determined by the 
glycan composition [30-33]. As mentioned, previously, the 
glycan composition on Env of different viruses is 
heterogeneous, as glycan maturation is primarily driven by 
the relative exposure of polypeptide, during folding, to 
Endoplasmic Reticulum (ER) and Golgi glycosylation 
modification enzymes. The specific constitution of Env 
between various HIV-1 strains may play a decisive role in a 
well-articulated CLR and DC-SIGN binding and 
transmission efficiency. A recent study showed the 
importance of the composition of HIV-1 glycans for DC-
SIGN-mediated transmission [32-34]. The DC-SIGN as C-
type (a type 2) lectin receptor (CLR) with a CRD, binds 
high-mannose glycans and fucose on the surface of viruses 
and bacteria, in a Ca2+-dependent manner. DC-SIGN 
displays enhanced affinity and specifically for high-mannose 
glycans with terminal Manα1-2 structures on HIV Env 
[25,35]. Although DC-SIGN serves as a PRR [15,36], yet 
the HIV-1 can evade the immune system mediated 
degradation machinery and exploit DC-SIGN for its 
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transmission to CD4 T cells [15,30,34,37,38]. DC-SIGN 
interaction with HIV-1 is thus implicated in the initial stages 
of virus acquisition and spread from the mucosal site of 
virus entry [39]. However, the relative importance of these 
CLR expressing cells particularly DC-SIGN in HIV-1 
transmission remains controversial. In some studies, 
antibody blockage of DC-SIGN on DCs was found to reduce 

virus capture only up to 50% [40,41], but other studies have 
demonstrated 70%-75% inhibition of virus capture by 
immature monocyte derived dendritic cells (MDDCs) and 
almost complete blockage of transmission to CD4 T cells 
[31]. The siRNA-based knock down of DC-SIGN in 
immature dendritic cells also been able to decrease the HIV-
1 transfer to CD4 T cells by 75% [42]. 

Figure 1. Schematic representation of HIV-1 Env glycan composition governing the balance between virus capture and transmission vs. 
degradation by antigen presenting cells (APCs). The innate immune cells (macrophages and dendritic cells) recognize HIV-1 via CLRs 
expressed by these cells lining the mucosal surface of the host. DC-SIGN expressed by mucosal innate immune cells has a very high 
affinity to bind to oligomannose glycans. It captures the virus, and the downstream processing and fate of virus within these APCs whether 
directed to viral degradation and presentation pathway towards CD4 cells or transmission and dissemination within the host is determined 
by the glycan composition of the virus envelope glycoprotein. (A)HIV-1 with Env expressing homogenous oligomannose type of glycans 
are taken by the APCs via DC-SIGN and endocytosed. Viruses expressing abundantly Man5-9GlcNAc2 oligomannose type of glycans bind 
with high affinity to DC-SIGN rendering their release to other cells unlikely. These viruses are shuttled to lysosomal degradative pathway, 
processed and presented through MHC II to TCR. (B)Viruses with heterogenous glycans of different levels of complexities with complex, 
hybrid and oligomannose glycans representing the heterogeneity bind to DC-SIGN relatively with lower affinity and avidity. These weakly 
bound viruses are released from the DC-SIGN and transferred directly through trans-infection pathways. Within APCs the weakly bound 
viruses are preserved within the endosomal compartments to prevent degradation and protect the insidious reservoir of viral particles. The 
infectious viral particles within the APCs along with MVBs are transferred to target CD4 cells or the virus is recycled with or without DC-
SIGN to the cell surface and transferred to CD4 cells through free virus particles or trans-infection. 
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The glycan composition expressed on HIV Env is a key 
factor determining DC-SIGN-mediated virus transmission 
and fate of virus being taken up by the cells expressing these 
CLRs. Previously, it has been shown that HIV-1 enriched 
with high-mannose glycans was captured more efficiently by 
DC-SIGN and shuttled towards a degradation pathway,
which augmented the MHCII-antigen presentation but
impeded trans-infection [30]. The process of decorating
surface of Env with glycans adds a layer of diversity to the
already extremely high level of Env variation found among
circulating HIV-1 isolates. At the genetic level, N-linked
glycosylation is dictated by the N-X-S/T motif, where X is
any amino acid except P. The Env proteins have varying
number of these potential N-glycosylation sites (PNGSs),
ranging from 23 to 34 per gp160 protomer; the majority of
these are in the gp120 surface subunit, whereas only four to
eight are in the external domain of the gp41 subunit [4].
Most PNGSs are not conserved. In fact, only six to eight
PNGSs found in Env of clades A, B, C, G, and CRF_01.AE
are >90% conserved, and for several PNGSs, conservation is
<20% (Figure 2) [4,43]. The PNGSs on HIV-1 Env are not
fully occupied [44,45]. The level of PNGS occupancy is
dictated by site accessibility for a series of enzymes
participating in the glycan maturation process [46]. The
glycosylation pathway is initiated by the addition of
Glc3Man9GlcNAc2en bloc onto a nascent protein in the ER.

As the protein is transported across the ER and the Golgi 
apparatus, the high-mannose structure is trimmed and 
subsequently elaborated with hybrid- and complex-type 
glycans [19]. In contrast to cellular glycoproteins, which are 
usually adorned with mature complex-type glycans, virus 
Env carries all three glycan types, including early and 
intermediate high-mannose, intermediate hybrid, and mature 
complex glycans [47-49]. In fact, various glycan types and 
glycoforms are found in proportions that vary depending on 
Env strain and host cell type [4,23,44,45,50]. On soluble and 
membrane-anchored Env mimics, the high-mannose-type 
glycans range from 60–70%, with the most prominent being 
the least processed Man9GlcNAc2 glycans at 20–40% 
[19,47,48]. Analysis of soluble, uncleaved, prefusion-
optimized BG505 Env gp140 trimers produced in 293F cells, 
similarly has shown that 56% are high-mannose type 
composed of Man5 (6%), Man6 (3%), Man7 (6%), Man8 
(15%), and Man9 (26%) [51] hen the same proteins were 
produced in ExpiCHO cells, the total oligomannose content 
increased to 64%, with observable changes in glycoform 
proportions. Site-specific analysis further revealed that each 
PNGS on gp120 incorporated multiple glycoforms of only 
the oligomannose type or a mix of oligomannose and 
complex type, whereas the gp41 PNGSs had mainly 
complex type glycoforms [46,51]. 

Figure 2. Schematic representation of glycan distribution, occupancy and conservation on HIV-1 gp120. (A) The distribution 
of potential N-linked glycosylation sites (PNGSs) encoded by N-X-S/T (X#P) of gp120Bal. The various PNGSs are 
represented as putative complex type (orange) or putative oligomannose-type (green) based on previous findings [54-56]. (B) 
Percent conservation and occupancy of the various PNGSs across different clades calculated from Env sequences available 
from LANL database. (Adapted from Pritchard et al. 2015) [43]. 

The abundance of high-mannose glycans on HIV-1 Env and 
predominant binding of high-mannose glycans by DC-SIGN 
has been implicated in viral capture upon exposure and viral 
dissemination within the host. The interaction between HIV 
Env and DC-SIGN is influenced to a great extent by the 
glycan composition of virus [30,33,52]. Our recent findings 
also provide supporting evidence that virions carrying gp120 
with higher numbers of oligomannose-type glycans are more 
efficiently endocytosed through DC-SIGN and more 

proficiently processed for antigen presentation than HIV-1 
containing gp120 with heterogeneous glycans [34]. The 
transmission of oligomannose-enriched HIV-1 was relatively 
inefficient. Thus, the expression of oligomannose by HIV-1 
enhances capture of DC-SIGN and transmission, but 
presence of heterogenous-glycansnegatively affect 
transmission by enhancing viral degradation (Figure 1). The 
mechanisms by which hybrid and complex glycans help 
HIV-1 evade degradation are not well understood yet. DC-
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SIGN has been shown to shuttle HIV-1 bearing high-
mannose glycans to the degradative pathway, similar to 
other pathogens with such glycans [30]; this was indicated 
by an increased association with vesicles containing early 
and late endosomal markers and by more efficient antigen 
processing and presentation to MHCII-restricted CD4 T cells 
[30,34,53]. This study demonstrates that HIV-1 evades this 
degradative pathway by signals that prevent virus transport 
to endolysosomal compartments and preserve infectious 
virions on dendrites to promote their transfer to T cells [34]. 
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