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ABSTRACT 
Thymic stromal lymphopoietin (TSLP) is a cytokine produced primarily by activated epithelial cells of the lung, skin and 
intestine. The foremost property of this cytokine is to condition dendritic cells (DC) to initiate type 2 responses, and 
consequently to develop a wide range of related disease, including asthma, atopic dermatitis, and allergic responses. 
However, TSLP is also associated with regulatory and homeostatic processes. The objective of this review is to provide a 
summary overview of the variety of functions found in this cytokine.  

Keywords: Dendritic cells, Thymic stromal lymphopoietin 

Abbreviations: DC: conventional dendritic cells; TSLP: thymic stromal lymphopoietin; sTSLP: short isoform TSLP, lTSLP: 
long isoform TSLP, TSLPR: TSLP receptor; TLR: Toll-like receptor; ACh: acetylcholine; Th: T helper; TFh: T follicular 
helper; Treg: T regulatory; NKT: Natural killer T; LPS: lipopolysaccharide; TEC: thymic epithelial cells; TECc: cortical 
thymic epithelial cells; TECm: medullar thymic epithelial cells; RSV: respiratory syncytial virus; HDM: house dust mite; 
KO: The knockout; HIV: human immunodeficiency virus; IBD: inflammatory bowel diseases; IEC: intestinal epithelial cells; 
MDC: macrophage-derived chemokine; TARC: thymus and activation-regulated chemokine; UC: ulcerative colitis; CD: 
Crohn´s disease; BCL- 2: B cell Leukemia/Lymphoma 2; STAT-5: signal transducer and activator of transcription 5; PPAR2: 
Peroxisome proliferator activated receptor; NF-kB: Nuclear Factor kappa B; TRPA1: transient receptor potential action 
channel subfamily-member 1/ transient receptor potential ankyrin; RIG-1: retinoic acid inducible gene 1 

INTRODUCTION 

It is widely recognized that the epithelial lining of several 
organs, such as skin, lungs and gut, has a fundamental role 
as a protective barrier against infection and physical or 
chemical injury [1]. However, the epithelium is no longer 
considered only as a physical barrier, but it is also the 
primary one that senses the external environment, working 
as a key sensor and modulator of the immune response [2]. 
The thymic stromal lymphopoietin (TSLP) is a cytokine 
produced by activated lung, skin and gut epithelial cells, 
inducing the activation of an extensive range of immune and 
non-immune cells [3,4]. Regarding the immune perspective, 
the main property of this cytokine is to condition the 
dendritic cells (DC) to initiate type 2 responses, and 
consequently a broad array for allergic responses [5,6]. 

Actually, TSLP is a pleiotropic cytokine belonging to the IL-
2 family but it was identified in 1994 [7] as a secreted factor 
from a mouse thymic stromal cell line; which promote 

immature B cells [7] and T progenitors [8]. TSLP is a four-
helix-bundle cytokine and was first cloned in humans in 
2001 [4,9], interestingly close to the gene cluster encoding 
several Th2-related cytokines [4,10]. The human TSLP gene 
is located on chromosome 5q22.1 next to the atopic cytokine 
cluster such as IL-4, IL-5, IL-9, and IL-13 on 5q31  
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[3,6,9,11,12]. The biological activity of TSLP, in both 
humans and mice, is mediated by binding to their complex 
composed by TSLP receptor α chain (RTSLP, chain specific 
of TSLP, also known as CRLF2; this chain is a member of 
the hematopoietic receptor family and binds with low 
affinity to TSLP) and the interleukin 7 receptor-α chain (IL-
7Rα), both chains together induce a heteromeric complex of 
high-affinity [12-14]. 

There are many different stimuli including some allergens, 
cytokines, respiratory viruses [1,3,15,16], leading to the 

production of TSLP in epithelial cells, airway smooth 
muscle cells, human DCs, and mast cells, etc. [1,3,17,18]. 
Furthermore, different kind of cells and tissue can respond to 
TSLP including immune cells (e.g. DCs, ILC2, T and B 
lymphocytes, natural killer T (NKT), T regulatory cell 
(Treg.), monocytes, mast cells, macrophages, eosinophils, 
basophils) and non-immune cells (platelets and sensory 
neurons, heart, skeletal muscle, kidney and liver) 
[3,4,12,19], inducing different functions (Table 1). 

Table 1. Functional activities of TSLP. 

IMMUNE CELL FUNCTION 

DC Th2 differentiation/maintenance 
memory Th2 [20] 

LT CD4+ IL-4 secretion, induction Th2. 
Enhance BCL-2/ STAT-5 
Survival [21] 

ILC2 drive Th2 and 
inflammation [22] 

LB Increase proliferation [23] 

Regulatory T Cells Short isotype modulates 
homeostasis in gut and 
skin [24] 

TFh Differentiation [25] 

NKT Increase IL-13[17] 

Eosinophils Increase recruitment [26] 

Basophils Increase IL-13 [27] 

Mast cells Not complete degranulation. 
Secretion of cytokines and 
chemokines that promote 
Th2 polarization [28] 

LT CD8+ Increase cytotoxicity and 
BCL-2/STAT-5 survival [29] 

NON INMUNE 
CELL 

FUNCTION 

Sensory neurons Itch in atopic 
dermatitis [30] 

Keratinocytes PPAR2 activation 

Fibroblast PPAR2 
Activation [31] 

One particularly pertinent reason to develop this topic is that 
the up regulation of the cytokine itself is closely linked up to 
the pathogenesis of numerous Th2 related diseases, 
including asthma, atopic dermatitis and allergic responses 
[32]. It is reported that the cytokine not only promote Th2 

response but also can be associated, with autoimmune 
disorders [33,34] and finally in recent times has been linked 
the TSLP to the pathogenesis with different tumors, like 
breast cancer [35], leukemia lymphocytic acute (ALL) [36], 
cutaneous T cell lymphomas [37], enhances lung metastasis 
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[38]. Moreover, intratumor Th2-type cell infiltrate correlates 
with cancer-associated fibroblast TSLP production and 
reduced survival in pancreatic cancer [39]. On the contrary, 
TSLP also mediates several immune homeostatic functions 
in thymic [40], intestinal [41] and trophoblastic cells [42,43]. 

The objective of this review is to describe the recent 
advances in the homeostatic and inflammatory mechanisms 
carried out by the TSLP as modulate of physiology of 
immune cell mainly DCs. 

DC PRIMING BY TSLP: IS RESPONSIBLE FOR 
PROINFLAMMATORY OR REGULATORY 
STATUS? 

Inflammatory function 

Conventional DCs are specialized antigen-presenting cells 
with a unique ability to activate resting T cells and to direct 
their differentiation into several effector profiles [5,44-46]. 
Human TSLP markedly activates and maintains the survival 
of DCs and Langerhans cells [6,47,48]. In addition, TSLP-
conditioned DC up regulated the costimulatory molecules 
CD40, CD80, CD86 and OX40L, and produces high levels 

of IL-8 IL-15, Eotaxin2, thymus and activation-regulated 
chemokine (TARC/CCL17) and macrophage-derived 
chemokine (MDC/CCL22) [6,49]. Moreover, naive 
allogeneic T cells that were cocultured with TSLP-
conditioned DC acquired an inflammatory Th2-like 
phenotype with production of IL-4, IL-5, IL-13, and TNF-α 
but not IL-10 [50,51]. Likewise, it seems that TSLP induces 
human myeloid DC to express OX40L (the TNF superfamily 
protein) [49], which induce the generation of inflammatory 
Th2 cells. The relevance of the OX40L molecule is clearly 
reflected in the initiation of the Th2 response which, 
independently of IL-4, depends on the interaction of OX40 
with OX40L expressed in activated naïve T and DC cells 
respectively [20,52,53] (Figure 1). As a matter of fact, Ito et 
al. observed that, anti-OX40L or anti-IL-4 monoclonal 
antibody strongly inhibited the production of IL-4, IL-5 and 
IL-13 [53,54]. Respectively, there is clear evidence which 
support that TSLP, even in the absence of IL-4, could 
directly promote Th2 differentiation and type 2 cytokine 
from naive T cells in vitro [55]. 

Figure 1. Different immune response by TSLP-conditioned DC 
Lung: TSLP-conditioned DC up regulates the costimulatory molecules mainly OX40L, and produces chemokine’s like TARC 
and MDC, inducing the activation chemo taxis of Th2 profile. The inflammatory Th2-like phenotype produces of IL-4, IL-5, 
IL-13, and TNF-α but not IL-10. The increase of IL-4 induces a switch isotype to IgE in the LB inducing the asthmatic 
response. Gut: Pathogenic bacteria induce long isoform TSLP (conventional TSLP) and down-regulate the short isoform and 
commensal bacteria increased the sTSLP expression on the mucosa. IEC-conditioned DC induces Treg profile in homeostatic 
condition. The increased of TGFβ induce a switch isotype to IgA in the LB 

Taking into account all the information mentioned before, 
the Th2 profile is induced and the recruitment of Th2 cells 
favors them to migrate towards inflammatory sites and 
reflects the disease activity in pathologies like dermatitis, 
asthma, allergic responses, [32,51]. 

Interestingly, our group observed that DC cultured with 
Acetylcholine (ACh); the most important parasympathetic 
neurotransmitter in the airways [56]; in presence of TSLP 
showed higher levels of OX40L expression than cells 

cultured with individual stimuli. A similar effect was 
observed with the expression of maturation markers and the 
TNF-α and IL-8 cytokine production. Moreover, when DC 
were cultured with both TSLP and ACh, a higher stimulation 
of IL-4, IL-5, and IL13 production was observed, all of that, 
suggesting that a neurotransmitter like ACh combined with 
TSLP-stimulated DC could enhance the Th2 profile 
polarization facilitating, in consequence, the development of 
asthma [57]. 
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Homeostatic function 

At the beginning of this review, we describe several factors 
capable of inducing TSLP secretion by epithelial cells, 
especially during the inflammatory response, but this is also 
critical for the generation and maintenance of the 
homeostatic microenvironment, in which DC again is one of 
the main protagonists [41,58,59]. 

FUNCTIONAL ROLE OF TSLP IN THE GUT 

For a few years, attempts have been made to deepen its 
action on the intestinal mucosa and the pathologies 
associated with its immune dysregulation. The 
gastrointestinal tract is the largest surface of the body and 
the most exposed to potentially pathogenic microorganisms. 
It has a role of allowing the uptake of micronutrients and 
preventing the entry of microorganisms while maintaining 
homeostasis [60]. Multiple mechanisms of both innate and 
adaptive immunity participate in maintaining mucosal 
homeostasis [61]. Indeed, it is the epithelial cells that play an 
essential role. This physical barrier that separates the lumen 
from immune cells includes tight junctions, produces 
antimicrobial peptides and mucins that prevent the 
adherence and subsequent colonization of microorganisms 
but it also secretes constitutive factors and cytokines such as 
TGFβ and IL-10 that maintain the mucosa tolerance not only 
to microbial challenge but also to dietary antigens [62,63]. In 
fact, the breakdown of this barrier leads to the development 
of inflammatory diseases as allergies, diabetes and 
inflammatory bowel diseases (IBD). In recent years, 
intestinal epithelial cells (IEC) have acquired central 
importance in sensing the environment and instructing 
dendritic cells in intimate contact to act accordingly [64,65]. 
Thus, CD103+ dendritic cells in the presence of a non-
activated line of human IEC acquire an anti-inflammatory 
phenotype. The gastrointestinal tract expresses TSLP 
constitutively, with low levels in the small intestine and 
higher in the colon [24]. The TSLP was established as one of 
the main factors secreted by the IEC when sensing the flora; 
modulate the basal levels of this hematopoietic factor for 
instructing DC towards a non-inflammatory profile [58]. 
EIC-conditioned mucosal DC increase the expression of the 
OX40L molecule inducing a Th2 profiles while decreasing 
the expression of IL-12/23 p40 subunit, effects mediated by 
TSLP and limiting Th1/Th17 polarization reducing the 
production of IFN- and IL- 17 [48,66,67]. In the same way, 
conditioned DC acquires a non-inflammatory phenotype 
activating the differentiation of Foxp3 Treg cells suppressing 
immune response and inducing tolerance [68]. In vitro 
assays with naive CD4+ CD25- cells showed that TSLP per 
se is not capable of inducing CD4+CD25+ Foxp3+ Treg 
cells [6, 69]. This only occurs when TSLP previously 
interacted with DC of mesenteric lymph node or lamina 
propria. The regulatory phenotype acquisition is not induced 
when conditioned DC are co-cultured with peripheral naive 
lymphocytes [70]. The knockout (KO) of the RTSLP in DC 

was shown to prevent the induction of Foxp3 Treg 
lymphocytes in a murine model [71]. Facts which reinforce 
the essential TSLP role in the homeostasis control of the 
gastrointestinal tract. 

Variations in TSLP levels in the intestinal mucosa are 
essential to define the degree of activation of the DC and the 
bias of the concomitant effector response. Low 
concentrations maintain low IL-2 secretion and favor non-
inflammatory Th2 polarization. The bacterial ligands of toll 
like receptors (TLR) such as lipopolysaccharide (LPS), 
peptidoglycan and flagellin when interacting with IEC 
increase TSLP levels in the mucosa, mediated effect via the 
activation of the NFk-β pathway [72-74]. Also, viral 
components of rotavirus and human immunodeficiency virus 
(HIV) increase TSLP levels when sensed by the IEC [75]. 
Minimal variations in these basal concentrations instruct DC 
into an inflammatory profile capable of producing IL-12 and 
induce inflammatory Th1 response profiles [24]. 

FUNCTIONAL ROLE OF TSLP IN THE THYMUS 

The thymic stroma is mainly made up of a heterogeneous 
population of epithelial cells, thymic epithelial cells, (TEC) 
present in both the cortex and the medulla, which are called 
cortical thymic epithelium (TECc) and medullary (TECm) 
cells, respectively. It is known that TECc are involved in the 
process of positive selection, while TECm and thymic DC 
are involved in the process of negative selection [76] . As 
regards, TSLP, it is expressed in Hassall’s corpuscle where 
also in the medulla localized activated DC, and CD4+ 
CD25+ Treg. Due to its expression by Hassal´s corpuscles in 
the thymus, TSLP has homeostatic activities like regulation 
on the capacity of DC and plasmacytoid DC to drive 
development of Treg [58,77,78]. Interestingly, the number of 
Foxp3+ Treg in the tumor microenvironment correlated with 
the increase expression of TSLP protein in some tumor, like 
lung cancer [79]. 

FUNCTIONAL ROLE OF TSLP IN 
TROPHOBLASTIC AND PREGNANCY 

Physiologically, pregnancy can be considered a successful 
embryo allograft. Guo et al. [42] described that human 
trophoblast, cells secreted soluble TSLP in maternal-fetal 
interface of early placentas. They described that the 
functional RTSLP is highly expressed in human decidual 
CD1c DC (dDC) and, besides, TSLP or supernatants from 
human trophoblasts culture specifically stimulate dDC to 
highly produce interleukin-10 and Th2-attracting chemokine 
TARC/CCL-17. The TSLP-conditioned dDC prepare 
decidual CD4+ T cells for Th2 cell differentiation, involved 
in maternal-fetal immunotolerance. Moreover, the 
combination of hormones like progesterone or estradiol at 
physiological levels in early human pregnancy also induces 
TSLP mRNA and protein expression [43,80], too deep in 
this theme, Lin et al. [80,81] discover that, in a murine 
model, TSLP-conditioned DC can boost the production of 
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TARC/CCL17, which can afterwards, attract Th2-type cells 
to immigrate into the uterus. In addition, Du et al. [82] 
proposed a crosstalk model between embryo trophoblasts 
and decidual leukocyte subsets of the maternal–fetal 
interface in human first-trimester pregnancy, they 
confirmed, trophoblast-derived TSLP actives the DC to 
induce CD4+ CD25+ FOXP3+ T cells profile in early 
pregnancy via TGF-β1. In summary the TSLP is critical for 
a successful pregnancy, mainly in the beginning of the 
maternal-fetal interface. 

TSLP and a new paradigm 

The difference between the activation of DC with the 
induction of homeostatic in certain tissues and the hallmark 
of exacerbated Th2 profile on the microenvironment where 
the DC were found, is an issue that generates the beginning 
of the paradigm of the function of TSLP. Recently, different 
groups have shown that exists in humans a novel isoform, 
that is to say, a shorter isoform of TSLP who is 
constitutively expressed in a variety of tissues, including 
bronchial and colonic epithelial cell, keratinocytes and lung 
fibroblasts [42,83]. Furthermore, short TSLP isoform 
(sTSLP) is involved in homeostatic functions, whereas the 
long TSLP isoform (lTSLP, conventional isoform) is 
expressed constantly at a very low level and up regulated 
during inflammation in different tissues [24]. Fornasa et al. 
[84] described the two coding transcripts code for the lTSLP
of 159 amino acids and for sTSLP which has the last 63
residues of lTSLP and is identical to its C-terminal portion.
They describe that sTSLP is the homeostatic isoform of
TSLP present under steady-state conditions in the gut and
skin. They described whether sTSLP had anti-inflammatory
properties on DC. However, only lTSLP significantly up
regulated TARC/CCL17 and MDC/CCL22 expression and
the secretion of TNF alfa, but was not affected, in none of
the 3 cytokines, by the presence of sTSLP. Finally, Tsilingiri
et al. [24] reported that the 2 isoforms were not the result of
alternative splicing of the same transcript; they are
controlled by two different promoter regions.

Interestingly, a dual tissue-dependent role is assigned to 
TSLP. In general, its role is inflammatory in the skin and 
lung and anti-inflammatory in the intestine and thymus. In 
the intestine they contribute to maintain homeostasis through 
the induction of regulatory response profiles. In part, the 
immunomodulatory effect was attributed to the sTSLP 
whose transcript is most expressed in the epithelial barrier. 
The lack of animal models, which do not express the short 
isoform and the fact that TSLPR-IL7Rα heterodimeric 
receptor, is for the long form makes a functional study 
difficult. However, the fact that IEC in contact with 
pathogenic bacteria up- regulates the long isoform and 
down-regulates the short one while the contrary is observed 
with commensal bacteria supports the theory of homeostatic 
action of the short form on the mucosa [24,85,86]. 

TSLP IN PATHOLOGIES 

Asthma 

Asthma is a chronic inflammatory disease of the conducting 
airways that involving a series of events with the 
participation of epithelial cells and the activation of immune 
cell effector mechanisms It is known that this series of 
events involving the airways is associated with the 
development of a Th2 profile, airway inflammation, 
bronchial hyper reactivity, the excessive production of 
mucous secretion and the structural remodeling of the 
airway. Th2 lymphocytes with the consequent production of 
IL-4, IL-5 and IL-13 cytokines; lead to chronic inflammation 
characterized by infiltration of the mucosa of eosinophil’s, 
mast cells, and Th2 lymphocytes [46,87,88]. As the DC are 
the orchestral conductors of the immune response, imposing 
a specific Th lymphocyte profile, their ability to sense the 
surrounding microenvironment is of utmost importance for 
the initiation of allergic processes. 

As described previously the TSLP secreted by epithelial cell 
is the cytokine responsible for conditioning DC to a Th2 
inflammatory profile that produce the classical Th2 
cytokines IL-4, IL- 5, and IL-13, and a high concentration of 
TNF-α promoting development to asthma pathogenesis 
[20,32]. Furthermore, an experiment made in TSLPR KO 
mice failed to develop an inflammatory lung response, 
underlining the importance for this cytokine in the 
development in allergic response [11]. The TSLP 
overexpressed in airway epithelia lung biopsies of asthmatic 
patients [89,90] and in asthmatic mice, [2,91] which is 
associated to the pathogenesis of airway disease, correlated 
with the severity of asthma. Moreover, a polymorphism in 
the TSLP locus was associated with an increased risk or 
more susceptibility in development of asthma [92,93]. 

Studies carried out in serum samples of 65 pediatric patients, 
newly diagnosed for allergic asthma, showed an increased 
production of the TSLP that correlated negatively with 
asthma control test samples and Treg cells [94]. Different 
groups proposed the TSLP as a biomarker for inflammation 
asthma patients and also as a biomarker of severe asthma 
[94,95]. As described previously the TSLP may have dual 
immunoregulatory roles. Dong et al. [96] found that house 
dust mite (HDM) and lTSLP impaired barrier function and 
the treatment with sTSLP and 1,25D3 prevented HDM-
induced airway epithelial barrier disruption. Moreover, 
sTSLP and 1,25D3 treatment ameliorated HDM-induced 
asthma in mice. 

The relevance of TSLP towards the induction of a Th2 
profile and the development of the asthmatic process is not 
limited to its effect on DC, other cell types favor this profile 
such as mast cells, basophils [1,32] and Innate lymphoid 
cells 2 (ILC2), in the last one mainly his survival [97]. ILCs 
are a recently identified family of heterogeneous immune 
cells that can be divided into three groups based on their 
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differential developmental requirements and expression of 
effector cytokines. The ILC2s produce the type 2 cytokines 
interleukin-5 (IL-5) and IL-13 and promote type 2 
inflammation in the lung and intestine. Kabata et al. [98] 
suggest that the ILC2 priming by TSLP may play a critical 
role in the resistance to steroid in allergic airway 
inflammation. 

TSLP and viral infection 

Respiratory virus infections, such as respiratory syncytial 
virus (RSV) and rhinovirus infections have been associated, 
in children and adults, with the development of persistent or 
exacerbations asthma. Indeed, rhinovirus infection in the 
first 3 years of life is associated with increase in risk for 
asthma [99,100]. Viral infection may development of the 
Th2 immune response, be part of leading to reduced IFN-γ 
and IL-12, and inefficient antiviral immunity asthmatic 
individuals [101], by activation of different TLR [102]. 

Tanaka et al. [103] evaluated how the relationship between 
TSLP and TLR3 ligand stimulation influences DC 
activation. They suggested that through DC activation, 
human TSLP and TLR3 ligands promote differentiation of 
Th17 cells with the central memory T cell phenotype under 
Th2- polarizing conditions. This result is relevant to patients 
with severe asthmatic disease who have a neutrophil 
infiltrate and inflammation, probably induced by the Th17 
profile. 

Lee et al. [104] reported RIG-I as a novel pathway that leads 
to TSLP expression after respiratory virus infection of 
airway epithelial cell, confirming that airway epithelial cells 
from asthmatic children produce significantly greater levels 
of TSLP after RSV infection than cells from healthy 
children. On the other hand, they confirm that RSV-induced 
TSLP expression was found to be critical for the 
development of immunopathology, in a murine model. 

Conversely to the previously mentioned works, there would 
seem not to be a beneficial role of TSLP in antiviral 
immunity, in fact, studies realized with TSLPR-deficient 
mice, show that TSLP was required for the expansion and 
activation of virus-specific effector CD8 +T cells in the 
lung, but not in the lymph node. The mechanism involved 
TSLPR signaling on newly recruited CD11b+ inflammatory 
DC [105]. TSLP may be the connections between virus 
infection and persistent or exacerbations asthma. 

Atopic dermatitis 

Atopic dermatitis (AD) is a common chronic skin disorder, 
with relapsing eczematous skin inflammation often 
accompanying severe pruritus [106]. 

Soumelis et al. [50] determined in the 2002, the expression 
of TSLP protein in of skin lesions, atopic dermatitis, nickel-
induced contact dermatitis and cutaneous lupus 
erythematous samples. High expression of TSLP was found 
in the keratinocytes of acute and chronic atopic dermatitis, a 

clear Th2 profile of allergic disease. This group determined 
also that the expression of TSLP was associated with the 
activation of Langerhans cells. Murine models confirmed 
that DC migrate to lymph nodes and activate to Th2 profile 
[107]. 

Moreover, like in asthma patients, important concentration 
of the TSLP detected in serum of patients both children and 
adults with AD [108-110]. Polymorphisms in the TSLP gene 
are associated with an increased risk of development and 
progression of AD. In this pathology the polymorphisms can 
involve both TSLP and its RTSLP or RIL-7 [110,111]. 

Perinatal supplementation with probiotics has been shown to 
reduce the incidence of AD in infancy [112]; as one of the 
cytokines found in breast milk is TSLP [113] it was 
postulated that the mechanism that reduces the AD involved 
this cytokine, but neither TSLP nor TGFβ would seem to be 
involved [114]. 

One of the most interesting research of the last years, 
described a directly communication between epithelial cells 
to cutaneous sensory neurons via TSLP to promote itch. 
TSLP acts directly on a subset of TRPA1-positive sensory 
neurons to trigger robust itch behaviors, giving other clear 
evidence of the influence of the nervous system on allergic 
pathologies [30].  

Both Basophils [115] and ILC2 have a significant relevance 
in TSLP activation in AD. In fact, a population of skin 
resident ILC2s present in healthy human skin was identified 
by Kim et al. [116] besides this is enriched of these cells in 
lesioned human skin from AD patients. ILC2 is mainly 
regulated by IL-25 and IL-33 in gut and lung, but Kim et al. 
[116] described that the ILC2 in skin and skin-draining
lymph nodes responds critically to TSLP. Finally, TSLP
interacts directly with skin-homing Th2 cells in AD patients
which have enhanced TSLPR expression [117].

Fornasa et al. [84] found an up regulation of the lTSLP 
isoform in lesioned as opposed to nonlesional biopsy 
specimens but they found that sTSLP was significantly 
down regulated in lesioned biopsy, indicating an imbalance 
of the 2 isoforms in patients with AD because they showed 
down regulation of sTSLP and up regulation of lTSLP. 

GUT PATHOLOGIES 

Epithelial cells of the mucosa and dysbiosis of the micro 
biota are pillars in the development of inflammatory bowel 
diseases. IBD refers to two entities defined as ulcerative 
colitis (UC) and Crohn disease (CD) [62,118]. These 
diseases have a high prevalence of 396 per 100,000 
individuals, values that increase year by year. Because of the 
symptoms with which they occur such as diarrhea, 
abdominal pain, and weight loss, they are considered 
disabling diseases. Due to the homeostatic function of TSLP 
in the intestine plus the fact that it is produced in a 
constitutive homeostatic way, it is assumed that alterations 
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in these levels are associated with pathology. The expression 
of TSLP was demonstrated in the colon lesions of patients 
with UC whose effector mechanism is the induction of Th2 
lymphocytes. In contrast, in colon biopsies of patients with 
Crohn’s disease, characterized by Th1/Th17 response 
profiles, down regulation of the TSLP gene was described 
[70], strikingly when their CDs when stimulated by bacterial 
ligands they secrete IL-12, which is consistent with the 
inability in these patients to induce tolerogenic or non-
inflammatory DC [85,119]. Likewise, in vitro tests with DC 
derived from human monocytes are only observed at low 
concentrations of TSLP, not when the concentrations are 
high. Indicating the existence of a concentration window 
outside of which the inflammatory response is triggered. 

Gene association studies found a correlation of TSLP with 
genes associated with the development of IBD. The most 
notable is that the CCR5 and CLCX10 chemokine receptors 
that govern the migration of T lymphocytes to the epithelium 
are up regulated by TSLP, which is essential in the 
development of necessary Th2 letters associated with UC 
[120,121]. Another Th2 chemo attractant is CCL11, which is 
increased in biopsies of UC patients and CCR2 that allows 
homing of intraepithelial lymphocytes that express the αEβ7 
molecule up regulated by TSLP in UC [70]. In contrast, the 
decrease of CCL11 in CD was not associated with TSLP 
[122]. IL-4 and Il-13 cytokines are increased by TSLP in the 
colon of UC patients. It was demonstrated that IL-13 induces 
an increase of the permeability in the IECs mediated by the 
activation of cellular apoptosis and the decrease of the 
ocludin 2 leading to the damage associated with this 
pathology [123, 124]. Genes are also up regulated in DCs 
that have to do with the induction of the Th2, 
CCL24/eotaxin profile that induce eosinophil recruitment in 
UC patients [125]. 

It should be noted that an association was also found 
between the levels of TSLP and genes associated with the 
junctions of epithelial cells. In this sense, a decrease in Zo-1 
and ocludin, a protein that is part of tight junctions in UC 
patients, was found. Disruption of barrier permeability is 
known to be one of the first mechanisms in inducing 
inflammatory response associated with damage to the 
mucosa and pathology, on the contrary, the CLN1 gene is 
increased, which produces ocludin-1, a mechanism 
associated with compensating for damage [70,126,127]. 

An attempt has been made to define the association of 
isoforms with each pathology. The most relevant results 
show that in the biopsies of patients with CD the short 
isoform is down- regulated; while there would be no 
alteration in the long isoform [127], the opposite effect 
occurs in biopsies of patients with UC. Tsilingiri et al. [84] 
using specific-isoform antibodies demonstrated a down-
regulation of short isoform in the biopsies of untreated celiac 
patients. These results encourage future therapies to restore 
the homeostatic levels of this isoform [128]. The results are 

generally consistent in that the long isoform would be 
responsible for the induction of disease-associated damage. 
All this allows us to think that blocking TSLPR-TSLP 
signaling would be encouraging in the development of 
therapies that improve the quality of life of patients with 
IBD interfering with the activation of the inflammatory 
response through the restoration of homeostatic conditions. 

Conclusion and therapeutic target 

In conclusion, the TSLP is a key modulator of the 
responses through its impact mainly on DC. Due to the 
relevance of TSLP in the pathophysiology of diseases 
such as asthma and atopic dermatitis, the blocking of 
this cytokine has been the target of important research, 
leading to development of a numerous of clinical trials 
with very promising results to the treatment of this 
pathologies [1,21,110,129]. 
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