International Journal of Internal Medicine and Geriatrics

IJIMG, 1(2): 54-58 www.scitcentral.com Science Tech equation to research. ISSN: 2689-7687

Original Research Article: Open Access

Comparison of Colistin Susceptibility Testing by Vitek 2 Compact and Broth Microdilution Method for Carbapenem Resistant Isolates in a Tertiary Diagnostic Centre

Shaheen Shaikh^{*}, Heeral Pandya, Sanjay Arora and Tanvi Kamtekar

^{*}Suburban Diagnostics, Mumbai, Maharashtra, India.

Received October 04, 2019; Accepted October 16, 2019; Published December 28, 2019

ABSTRACT

A study was undertaken to compare colistin susceptibility using BMD and Vitek in carbapenem resistant gram negative isolates to evaluate the discrepancies and further course of action.

Conclusion: The broth micro dilution (BMD) technique is reliable and is easy to use method for determining the MIC of Colistin. The results correlated with Vitek system except for 2 isolates which showed very major errors which indicates that in case of resistance to Colistin by Vitek, broth dilution method must be used for correlation and to recheck the result. Also in case of Vitek system showing susceptibility to Colistin, we can safely report those isolates without doing micro broth dilution as we did not encounter any isolates which gave susceptible on Vitek and resistant on micro broth dilution method.

Keywords: Colistin, Vitek, Broth microdilution, MIC

INTRODUCTION

Colistin also known as polymyxin E is an antibiotic produced by certain strains of the bacteria *Penibacillus polymyxa*. Colistin is a mixture of the cyclic polypeptides colistin A and B and belongs to the class of polypeptide antibiotics known as polymyxins. Colistin is effective against most Gram-negative bacilli.

Colistin is a decades-old drug that fell out of favor in human medicine due to its kidney toxicity. It remains one of the last-resort antibiotics for multidrug-resistant *Pseudomonas aeruginosa*, *Klebsiella pneumoniae* and Acinetobacter [1]. NDM-1 metallo- β -lactamase multidrug-resistant Enterobacteriaceae have also shown susceptibility to colistin [2].

Colistin has been effective in treating infections caused by Pseudomonas, Escherichia and Klebsiella species. Colistin is an effective antibiotic for treatment of most multidrugresistant Gram-negative bacteria. It is used currently as a last-line drug for infections due to severe Gram-negative bacteria followed by an increase in resistance among Gramnegative bacteria.

Colistin resistance is considered a serious problem, due to a lack of alternative antibiotics. Some bacteria including *Pseudomonas aeruginosa, Acinetobacter baumannii*, Enterobacteriaceae members, such as *Escherichia coli* and *Klebsiella* spp. have an acquired resistance against colistin.

Colistin is increasingly needed for the treatment of infections caused by carbapenem-resistant Acinetobacter baumannii (CRAB) isolates [3]. The accurate antimicrobial susceptibility testing (AST) of colistin is of obvious importance; however, considerable discrepancies have been reported between the available assays. To address this issue, EUCAST and CLSI recently formed a Polymyxin. Breakpoints Working Group for colistin susceptibility testing [4], which recommended that broth micro dilution (BMD), is the most valid method for colistin AST. Among the diffusion methods, disc diffusion is unacceptable due to the large colistin molecule, while several studies in the literature have reported considerable discrepancies of the MICs produced by gradient tests [5]. The joint EUCAST/CLSI working group recently confirmed the problems that both of the available colistin gradient tests (manufactured by bioMe'rieux and Liofilchem) exhibit [6]. Colistin has been traditionally reported by all automated

Corresponding author: Dr. Shaheen Shaikh, Suburban Diagnostics, Mumbai, Maharashtra, India, E-mail: drshaheenshk@yahoo.com

Citation: Shaikh S, Pandya H, Arora S & Kamtekar T. (2019) Comparison of Colistin Susceptibility Testing by Vitek 2 Compact and Broth Microdilution Method for Carbapenem Resistant Isolates in a Tertiary Diagnostic Centre. Int J Intern Med Geriatr, 1(2): 54-58.

Copyright: ©2019 Shaikh S, Pandya H, Arora S & Kamtekar T. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

systems like VITEK, Phoenix since many years. CLSI guidelines 2018 issued a correction as follows - The only approved MIC method for testing is broth micro dilution method. Disc diffusion and gradient diffusion methods should not be performed. Biomerieux and BD have both issued a product correction notice on the same eventually in 2018.

STUDY

The broad objective of this study is to explore the concept of mental health healing among pastors and possibilities of collaboration with mental health professionals in Mzuzu.

Colistin susceptibility is done in our lab using $MICROLATEST^{R}$ marketed by Transasia in India. It is a broth micro dilution test which is CE=IVD approved for testing for Colistin. The cut offs provide are 0.25, 0.5, 1.0, 2.0, 4.0, 8.0 and 16.0 mcg/ml.

Breakpoints for Colistin to test *Pseudomonas* spp. and *Acinetobacter* spp. are as follows as per CLSI 2018. Resistant: >=4 mcg/ml, Susceptible: <=2 mcg/ml.

Breakpoints for Colistin to test *Pseudomonas* spp. and *Acinetobacter* spp. are as follows as per CLSI 2018. Resistant: >=4 mcg/ml, Susceptible: <=2 mcg/ml.

Breakpoints for Colistin to test Enterobactericeae are as follows as per EUCAST 2019. Resistant: >=2 mcg/ml, Susceptible: <=2 mcg/ml.

We have followed EUCAST for Enterobactericeae and CLSI for *Pseudomonas* spp. and *Acinetobacter* spp. Recommendations for MIC determination of colistin (polymyxin E).

As recommended by the joint CLSI-EUCAST Polymyxin Breakpoints Working Group published at http://www.eucast.org on 22 March, 2016 [4,7].

Colistin (polymyxin E) MIC determination is associated by several methodological issues. The issues have been

extensively investigated by the CLSI-EUCAST joint Polymyxin Breakpoints Working Group and the following method for determination of colistin MIC was agreed:

1. Reference testing of Enterobacteriaceae, *Pseudomonas aeruginosa* and *Acinetobacter* spp. is by the ISO-standard broth micro dilution method (20776-1).

Note:

- a. Cation-adjusted Mueller-Hinton Broth is used.
- b. No additives may be included in any part of the testing process (in particular, no polysorbate-80 or other surfactants).
- c. Trays must be made of plain polystyrene and not treated in any way before use.
- d. Sulphate salts of polymyxins must be used (the methane sulfonate derivative of colistin must not be used it is an inactive pro-drug that breaks down slowly in solution).
- 2. Susceptibility testing by other methods, including agar dilution, disk diffusion and gradient diffusion, cannot be recommended until historical data have been reviewed or new study data have been generated. Work on these methods is ongoing.

RESULTS

A total of 90 isolates over the 2 months were studied (July-August 2019). All the isolates were carbapenem resistant *Pseudomonas aeruginosa*, *Acinetobacter baumannii* and Enterobactericieae.

The carbapenem resistant isolate distribution was as follows:

1. Carbapenem resistant Enterobactericeae are a majority of the isolates which comprises of 71.11% of all the isolates.

era	rai memodological issues. The issues have been									
	Isolates	No. of isolates	% of isolates							
	Enterobactericeae	64	71.11							
	Klebsiella pneumoniae	40	44.44							
	E. coli	21	23.33							
	Enterobacter aerogenes	03	3.33							
	Non-fermenters	26	28.89							
	Pseudomonas aeruginosa	19	21.11							
	Acinetobacter baumannii	07	7.77							
	Total	90	100							

2. The sample distribution for carbapenem resistant gram negative isolates is as follows:

Sample types	No. of isolates	% of isolates
Urine	61	67.77
Pus	10	11.11
Sputum	09	10
E.T. secretions	06	6.66
Blood	03	3.33
Bile	01	1.11
Total	90	100

3. Urine forms the bulk of samples with carbapenem resistant gram negative isolates (67.77%).

The organism distribution sample wise is as follows:

Sample type	E. coli	Klebsiella pneumonia	Enterobacter aerogenes	Pseudomonas aeruginosa	Acinetobacter baumannii
Urine	17	26	02	12	02
Pus	02	02	01	03	02
Sputum	01	07	00	03	00
ET secretions	00	03	00	01	02
Blood	00	02	00	00	01
Bile	01	00	00	00	00
Total	21	40	03	19	07

4. Klebsiella causing UTI is the predominant isolatesample wise followed by *E. coli* and Pseudomonas in urine. MIC distribution in gram negatives by BMD is as follows:

Organisms	ganisms		MIC <=0.5 mcg/ml		MIC 1 mcg/ml		MIC: 2 mcg/ml		MIC 4 mcg/ml		MIC >16 mcg/ml	
	13014103	VTK	BMD	VTK	BMD	VTK	BMD	VTK	BMD	VTK	BMD	
E. coli	21	21	20	-	-	-	01					
Klebsiella pnuemoniae	40	39	40	-	-	-	-	-	-	01	-	
Enterobacter aerogenes	03	03	03	-	-	-	-	-	-	-	-	

5. 1 out of 21 *E. coli* isolates showed discrepancy, and 1 out of 40 *Klebsiella pneumoniae* isolates showed discrepancy. 3 Enterobacter isolates showed no discrepancy.

Organism s	No. of isolates	MIC <=0.5 mcg/ml		MIC 0.5-1 mcg/ml		MIC 1-2 mcg/ml		MIC 2-4 mcg/ml		MIC >4 mcg/ml	
		VTK	BMD	VTK	BMD	VTK	BMD	VTK	BMD	VTK	BMD
Pseudomonas aeruginosa	19	18	19	-	-	-	-	-	-	01	-
Acinetobacter baumannii	07	07	07	-	-	-	-	-	-	-	-

6. 1 Pseudomonas isolate showed MIC discrepancy resulting in major error in interpretation. 7 isolates showed minor difference in MIC values.

Details of the discrepancy:

Isolates	Mic by Vitek	Mic by BMD	Type of errors		
Klebsiella - Urine	>=16.0	0.25	Very major error		
E. coli - Sputum	<=0.5	2.0	Minor		
E. coli - Pus	<=0.5	1.0	Minor		
E. coli - urine	<=0.5	1.0	Minor		
Pseudomonas - ET secretions	<=0.5	1.0	Minor		
Pseudomonas - Urine	<=0.5	2.0	Minor		
Pseudomonas - Urine	<=0.5	1.0	Minor		
Pseudomonas - Urine	<=0.5	1.0	Minor		
Pseudomonas - pus	<=0.5	1.0	Minor		
Pseudomonas - pus	>=16.0	1.0	Very major error		
Pseudomonas - sputum	<=0.5	1.0	Minor		
Acinetobacter - urine	<=0.5	1.0	Minor		

- a. Minor discrepancy is when there are differences in MIC values obtained by both the methods but no change in category of interpretation.
- b. Major discrepancy is when difference in MIC values cause difference in category of interpretation.

DISCUSSION

- 1. Carbapenem resistant Enterobactericeae are a majority of the isolates. Klebsiella (28.88%) causing UTI is the predominant isolate-sample wise followed by *E. coli* (18.88%) and Pseudmonas (13.33%) in urine. Study carried out by Marya et al. [8] showed similar findings of Klebsiella being the predominant isolate.
- 2. Urine forms the bulk of samples with carbapenem resistant gram negative isolates (67.77%). Study by Marya et al. [8] showed similar findings of UTI contributing to carbapenem resistant isolates.
- 3. In case of *Klebsiella pneumoniae* out of 40 isolates in our study, only 1 isolate had a discrepancy in MIC values and the MIC given by Vitek was >=16 mcg/ml. We infer that in case of *Klebsiella pneumoniae*, reconfirmation by BMD needs to be done only in case of MIC >=16 mcg/ml. More number of isolates will have to be studied to corroborate the above inference.
- 4. In case of *Enterobacter aerogenes*, only 3 isolates were studied and had no discrepancy. But the low number of isolates does not allow any conclusion to be made.
- 5. In case of *E. coli*, out of 20 isolates, 3 had discrepancy in the values of MIC, which was minor error as it did not change the category of interpretation. So reporting by Vitek 2 compact for them can be taken into consideration.

- 6. In case of Acinetobacter, 7 isolates were studied and had no discrepancies. Yen et al. [9] showed similar findings.
- 7. But because the outcome of colistin use is dependent on the exact value of colistin MIC, this testing will have to be continued.
- 8. Our study is limited by the fact that we do not have a single case of colistin resistance by BMD. We did not find any such study.

CONCLUSION

- 1. The broth micro dilution (BMD) technique is reliable and is easy to use method for determining the MIC of Colistin. The results correlated with Vitek 2 compact except for 2 isolates which showed very major errors which indicates that in case of resistance to Colistin by Vitek, broth dilution method must be used for correlation and to recheck the result.
- 2. Also in case of Vitek 2 Compact showing susceptibility to Colistin, we can safely report those isolates without doing micro broth dilution as we did not encounter any isolates which gave susceptible on Vitek and resistant on micro broth dilution method.

REFERENCES

- Falagas ME, Grammatikos AP, Michalopoulos A (2008) Potential of old-generation antibiotics to address current need for new antibiotics. Expert Rev Anti-infect Ther 6: 593-600.
- 2. Polymyxin E (2016) Colistin The antimicrobial index knowledge base TOKU-E. Retrieved 28 May 2016.
- 3. Karaiskos I, Giamarellou H (2014) Multidrug-resistant and extensively drug resistant Gram-negative pathogens: Current and emerging therapeutic approaches. Expert Opin Pharmacother 15: 1351-1370.
- 4. EUCAST (2016) Recommendations for Colistin (Polymyxin E) MIC Testing-Joint EUCAST and CLSI Recommendation.
- 5. Dafopoulou K, Zarkotou O, Dimitroulia E (2015) Comparative evaluation of colistin susceptibility testing methods among carbapenem-non-susceptible *Klebsiella pneumoniae* and *Acinetobacter baumannii* clinical isolates. Antimicrob Agents Chemother 59: 4625-4630.
- 6. EUCAST (2016) EUCAST Warnings Concerning Antimicrobial Susceptibility Testing Products or Procedures—Antimicrobial Susceptibility Testing of Colistin—Problems Detected with Several Commercially Available Products.
- 7. Alexander LE, Loutit J, Tumbarello M, Wunderink R, Felton T, et al. (2017) Carbapenem-resistant Enterobacteriaceae infections: Results from a

retrospective series and implications for the design of prospective clinical trials. Open Forum Infect Dis 4.

- 8. Zilberberg DM, Nathanson HB, Sulham K, Fan W, Shorr AF (2017) Carbapenem resistance, inappropriate empiric treatment and outcomes among patients hospitalized with Enterobacteriaceae urinary tract infection, pneumonia and sepsis. BMC Infect Dis 17: 279.
- Yen T, Lily T, Ng SY, Poh K (2007) Susceptibility testing of unconventional antibiotics against multi resistant *Acinetobacter* spp. by agar dilution and Vitek 2. Diagn Microbiol Infect Dis 58: 357-361.