Journal of Agriculture and Forest Meteorology Research

JAFMR, 4(2): 372-375 www.scitcentral.com

ISSN: 2642-0449

Mini Review: Open Access

Plant Essential Oils as Ecofriendly Pesticides for Controlling the Peach Fruit Fly

Mahmoud Abbas Ali*

*Plant Protection Department, Faculty of Agriculture, South Valley University, Egypt.

Received November 07, 2019; Accepted November 25, 2019; Published February 05, 2020

ABSTRACT

Peach fruit fly is one of the most dangerous insect pests facing fruit production in the world. Plant oils are group of the most promising materials and compounds for controlling fruit flies, especially peach fruit fly, where it is ecofriendly and does not produce harmful effects on human health.

INTRODUCTION

Tephritidae famous as true fruit flies (*Diptera*), are a large group of flies include more than 4500 species described. The genus Bactrocera, one of these family members which include about 500 species, which are phytophagous. The Peach fruit fly (PFF) is considered one of the most dangerous fruit pests belong to Bactrocera genus which have wide distribution all over the world especially in Egypt, as it is spread in most areas of the Republic due to its adaptation to various climatic regions, high polyphagia and rapid reproduction [1]. It attacks a wide range of hosts (over 50 cultivated and wild plant species) such as: guava, mango, peach, apricot, fig and citrus [2].

CURRENT CONTROL METHODS

During the twenty first century, the uses of alternative methods are new trends rather than the use of conventional pesticides such as: organophosphorus compounds (i.e., malathion, diazinon and nailed) in order to reduce risk of insecticide treatment. Many technologies have developed for wide-area control of Tephritidae fruit flies and related species throughout Asia, Africa and the Pacific (Table 1).

Table 1. Modern control methods used for control of flies.

Methods	References		
Clouding cover sprays	Roessler [3]		
Protein bait sprays	Prokopy et al. [4]		
Soil drenches	Stark and Vargas [5]		
Male annihilation	McInnis et al. [6]		
Sterile insect releases	Vargas et al. [7]		
Releases of natural enemies	Vargas et al. [7]		
Cultural controls	Allwood et al. [8]		
Essential oils	Ali [9]		

Use of essential oils as control methods

The use of organic and ecofriendly materials is now an urgent necessity, especially when problems arise from the expansion of pesticide use. Essential oils are one of the most promising substances in the control of insect pests, especially peach fruit fly (**Table 2**). There are many essential oils used in management of fruit flies as described below:

Fecundity: Akhtar et al. [10] tested the toxic effects of neem

Corresponding author: Mahmoud Abbas Ali, Plant Protection Department, Faculty of Agriculture, South Valley University, Egypt, Email: m.abbas@agr.svu.edu.eg

Citation: Ali MA. (2021) Plant Essential Oils as Ecofriendly Pesticides for Controlling the Peach Fruit Fly. J Agric Forest Meteorol Res, 4(2): 372-375.

Copyright: ©2021 Ali MA. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

seeds, turmeric and sweet flag rhizomes on settling response and fecundity of *B. zonata*. His results indicate that, turmeric adults.

Table 2. Plant essential oils used for controlling peach fruit fly.

English name	Scientific name	Main component	Targeted pests	References
Onion	Allium cepa	Quercetin-3-lucoside, isorhamnetin-4-		
Omon	ишит сери	glucoside, xylose		
Garlic	Allium sativum	Aliin, allicin, ajoene, allylpropl		
Clove	Syzygium aromaticum	Methyl amyl ketone, methyl salicylate		
Peppermint	Mentha piperita	Piperine, chavicine		
Basil	Ocimum basilicum	Estragole anetholelinalool		Ali [9]
Castor	Ricinus communis	Ricinoleic acid, Oleic acid, Linoleic		All [7]
Eucalyptus	Eucalyptus obliqua	Alpha pinene, beta pinen-alpha		
Eucaryptus	Eucusypius oonquu	Phellandrene		
Watercress	Nasturtium officinale	Sulforaphane, Di Indolyl methane		
Ginger	Zingiber officinale	Gingerols		
Mustard	Sinapis alba	Erucic acid, oleic acid		
		Someldenin, nimbin, nimbinene, 6-		
Neem	Azadirachta indica	desacetyllnimbinene, nimbandiol,	B. zonata	Akhtar et al. [10]
		immobile, nimocinol, quercetin		
Sweet flag	Acores calamus	Lectins, sesquiterpenoids, lignans and	Akhtar et al. [10]	
		steroids		
Turmeric	Curcuma longa	Curcumin, desmethoxycurcumin and		Akhtar et al. [10]
		bisdemethoxycurcumin		Rehman et al. [14]
Valerian	Valariana	Valerian alkaloids actinidine (Ia) and		Jilani et al. [11]
	officianalis	valerianine (Ib), valerenic acid (IIa)		. ,
Colocynth	Citrullus colocynthis L.	Linoleic acid, oleic acid, catechin, gallic		
		acid, isosaponarin, isovitexin and		
		isoorientin		
Saussurea	Saussurea lappa	1-beta-hydroxycolartin, 5-alpha-hydroxy-		Rehman et al. [14]
costus		beta-costic acid		
Indian	W-li	Patchouli alcohol, maaliol, seychellene,		
valerian,	Valeriana jatamansi	calarene/β-gurjunene, α-santalene		
jatamansi				

Indian valerian, jatamansi	Valeriana jatamansi	Patchouli alcohol, maaliol, seychellene, calarene/β-gurjunene, α-santalene		
Harmel	Peganum harmala L.	Harmine, harmaline, harmalol, harman, harmalidine, ruine and tetrahydroharmine		
Tobacco	Nicotiana tabacum	Nornicotine, myosmine, anabasine, anatabine and isonicoteine		Solangi et al. [15]
Eucalyptus	Eucalyptus obliqua	Alpha pinene, beta pinen-alpha Phellandrene		20.m.g. 00 m. [10]
Clove	Eugenia caryophyllata	Carvacrol, thymol, eugenol and cinnamaldehyde	Ceratitus	Arancibia et al. [12]
Citronella	Cymbopogon nardus	Citronellal, limonene, linalool and isopulegol	capitata	
Garlic	Allium sativum	Aliin, allicin, ajoene, allylpropl	Musca domestica	Cheraghi Niroumand et al. [13]

TOXIC AND GROWTH INHIBITION

Valariana officianalis in ethanol and petroleum ether extracts had significant toxic and growth inhibiting effects on fruit fly [11]. While neem formulation has a significant effect against B. zonata eggs. Aranciba et al. [12] reported that the essential oil of clove has a good insecticidal activity against C. capitata that can be used to improve quality of fruit and for food products. Allium sativum has been demonstrated as numerous insecticidal activities on a wide range of insect species, for example, its juice had insecticidal activity against Delia radicum and Musca domestica [13]. Besides, in a recent study, a group of oils were used to control the pupa stage of the peach fruit fly. Eucalyptus oil showed remarkable superiority over other oils, as well as morphological changes, where the oils caused deformities in the adult flies resulting from treated pupa [9].

Repellent

Rehman [14] found that the petroleum ether extract of *C. longa*, ethanol and acetone extract of *P. harmala* were the most promising repellent against peach fruit fly *B. zonata* in a free choice bioassay. Neem oil and eucalyptus leaf solution showed high repellent action against the peach fruit flies as compared to neem seed powder solution and tobacco leaf solution [15].

REFERENCES

1. Ali MA (2016) Effect of temperature on the development and survival of immature stages of the peach fruit fly, *Bactrocera zonata* (Saunders) (Diptera: Tephritidae). Afr J Agric Res 11: 3375-3381.

- EPPO (2010) PM 9/11 (1): Bactrocera zonata: Procedure for official control. EPPO Bull 40: 390-395.
- Roessler Y (1989) Control; insecticides; insecticidal bait and cover spray. In: Fruit Flies: their Biology; Natural Enemies and Control (Eds Robinson AS & Hooper G); World Crop Pests 3 (B). Elsevier; Netherlands, p. 447.
- 4. Prokopy RJ, Miller NW, Pinero JC, Barry JD, Tran LC, et al., (2003) Effectiveness of GF-120 fruit fly bait spray applied to border area plants for control of melon flies (Diptera: Tephritidae). J Econ Entomol 96:1485-1493.
- Stark JD, Vargas R (2009) An evaluation of alternative insecticides to diazinon for control of tephritid fruit flies (Diptera: Tephritidae) in soil. J Econ Entomol 102:139-143.
- McInnis D, Leblanc L, Mau R (2007) Melon fly (Diptera: Tephritidae) genetic sexing: All-male sterile fly releases in Hawaii. Proc Hawaiian Entomol Soc 39: 105-110.
- 7. Vargas RI, Leblanc L, Putoa R, Eitam A (2007) Impact of introduction of *Bactrocera dorsalis* (Diptera: Tephritidae) and classical biological control releases of *Fopius arisanus* (Hymenoptera: Braconidae) on economically important fruit flies in French Polynesia. J Econ Entomol 100: 670-679.
- Allwood A, Blanc L, Vueti E, Bull R (2015) Fruit fly control methods for Pacific Island countries and territories.

- 9. Ali MA (2018) Toxicity of certain plant oils on pupil stage of the peach fruit fly, *B. zonata* (sunders) (Tephritidae: Diptera). Adv Plants Agric Res 8: 372-374.
- 10. Akhtar N, Jilani G, Mahmood R, Ashfaqe M, Iqbal J (2004) Effects of plant derivatives on settling response and fecundity of peach fruit fly *Bactrocera zonata* (Saunders). Sarhad J Agric 20: 269-274.
- 11. Jilani G, Kattak MK, Shazad F (2006) Toxic and regulation effect of ethanol extract and petroleum ether extract of *Valariana officianalis* L. against *Bactrocera zonata* (Saund). Pak Entomol 28: 11-14.
- 12. Arancibia M, Rabossi A, Bochicchio PA, Moreno S, López-Caballero ME, et al. (2013) Biodegradable films containing clove or citronella essential oils against the Mediterranean fruit fly *Ceratitis capitata* (Diptera: Tephritidae). J Agric Food Technol 3:1-7.
- 13. Cheraghi Niroumand M, Farzaei MH, Razkenari E, Amin G, Khanavi M, et al. (2016) An evidence-based review on medicinal plants used as insecticide and insect repellent in traditional Iranian medicine. Iran Red Crescent Med J 18: 22361.
- Rehman J, Jilani G, Khan MA, Masih R, Kanvil S (2009) Repellent and oviposition deterrent effects of indigenous plant extracts to peach fruit fly; *Bactrocera zonata* Saunders (Diptera: Tephritidae). Pakistan J Zool 41: 101-109.
- 15. Solangi BK, Sultana R, Wagan MS, Ahmed N (2011). Repellent action of botanical pesticides against fruit fly; *Bactrocera zonata* (Saunders) in laboratory. Pak J Entomol 26: 41-45.