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ABSTRACT 
Doxorubicin is one of the most important wide spectrum chemotherapeutic agents which are in frequent clinical use to 
manage numerous neoplasias either alone or in conjunction with other chemotherapeutic drugs. However, induction of 
cardiotoxicity, hepatotoxicity, pulmonary toxicity and nephrotoxicity along with bone marrow toxicity is the major limiting 
factor for its optimum use in cancer treatment. This indicates the need to reduce its toxic implication that could help the 
optimum utilization of doxorubicin in the treatment of cancer. The present review describes the effect of Naringin, a 
grapefruit bioflavonoid on the management of Doxorubicin induced toxicities in several preclinical studies. Naringin has 
been found to reduce cardiotoxicity, hepatotoxicity, nephrotoxicity, lung toxicity and DNA damage. The preclinical reports 
indicate that Naringin deserves clinical application in conjunction with Doxorubicin for the benefit of cancer patients as it is 
part of daily diet in the form of citrus fruits and juices. 
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INTRODUCTION 

Doxorubicin (DOX) 7~{S},9~{S})-7-
[(2~{R},4~{S},5~{S},6~{S})-4-amino-5-hydroxy-6-
methyloxan-2-yl]oxy-6,9,11-trihydroxy-9-(2-
hydroxyacetyl)-4-methoxy-8,10-dihydro-7~{H} -tetracene-
5,12-dione or Adriamycin is an anthracycline group of 
antibiotic, which was isolated from Streptomyces peucetius 
[1]. DOX is a broad spectrum antineoplastic agent and it has 
been clinically used either alone or in conjunction with other 
chemotherapeutic drugs to treat several antineoplastic 
disorders including Hodgkin's and non-Hodgkin's 
lymphomas, liver cancers, childhood solid tumors, breast 
cancer, multiple myelomas, thyroid carcinomas, ovarian 
cancer, gastric carcinoma, osteosarcoma, acute myeloblastic 
leukemias, myelogenous leukemia; small cell lung cancer, 
neuroblastoma, Wilms tumor, Kaposi’s sarcoma and soft 
tissue sarcomas (Figure 1) [2-14]. 

Figure 1. Molecular structure of doxorubicin. 
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Despite its high efficacy increasing adverse side effects are 
major stumbling block in the efficient use of DOX. DOX is 
known to induce adverse side effects in the form of 
lacrimation, diarrhea, conjunctivitis, hypersensitivity (fever, 
chills and urticaria), mucositis, hyperpigmentation of the 
nails, nausea and vomiting, myelosuppression, alopecia, and 
discoloration of urine [15,16]. DOX therapy produces tissue 
toxicity in the bone marrow, brain, kidney and liver [17,18]. 
Apart from this, the clinical use of DOX is associated with 
life threatening cardiotoxicity in the surviving patients [19-
21]. Despite the fact that it has several side effects, it is 
clinically successful in treating several neoplasias either 
alone or in combination with other chemotherapeutic drugs 
[2-14]. The optimum utilization of DOX in the treatment of 
cancer can be achieved by concurrent administration of 
natural products, which may reduce its toxicity without 
compromising its anticancer activity. The natural products 
may be more acceptable due to their biologic origin and their 
use may be also able to counter drug-induced resistance 
against cancer cell kill.  

Naringin (7-(2-O-(6-deoxy-α-L-mannopyranosyl)-β-D-
glucopyranosyloxy)-2,3-dihydro-4',5,7-trihydroxyflavone) 
or Naringenin 7-O-neohesperidoside is synthesized as a 
secondary metabolite by several plants belonging to citrus 
family (Figure 2). The origin of word Naringin can be 
traced to Sanskrit word Narangi (orange). Naringin is a 
disaccharide with a molecular formula of C27H32O14 and 
molecular weight of 580.539 g/mol. Naringin contains two 
rhamnose units, which are linked to its aglycone portion, 
Naringenin, at the 7-carbon position. Naringin was first 
discovered in the flowers of grapefruit tree in Jawa by 
DeVry in 1857 [22]. Naringin is a bitter tasting, white-beige 
coloured powder soluble at a concentration of 1 mg/ml in 
warm water. It is abundant in Citrus paridisi (grapefruit), the 
peels, seeds and membrane of which contain about 0.75% 
naringin [23]. One liter of grapefruit juice usually contains 
800 mg of naringin [24]. Naringin is also synthesized by 
various other citrus fruits that include Citrus nobilis 
(Tangore), Citrus junos (pomelo), Citrus unshiu (mandarin 
orange), Citrus sinensis (sweet orange), Citrus tachibana 
(tachibana orange), Poncirus trifoliata (bitter orange or 
hardy orange) and other plants including Artemisia 
stolonifera (wormwood), aerial parts of Thymusherba 
barona (caraway thyme) and roots of Cudrania 
cochinchinensis (cockspur thorn) [25-28]. Naringin forms 
part of daily diet in the form of various fruits and fruit juices. 
It has been reported to neutralize various free radicals in 
vitro [29,30]. Naringin also possesses metal chelating 
activity [31-33]. It possesses a broad-spectrum activity 
against cardiotoxicity, cancer, carcinogenesis, viral and 
bacterial infections, liver and nervous system toxicities [34-
41]. Naringin has been reported to act as a chemopreventive 
agent against fore stomach carcinoma triggered by benzo-a-
pyrene [42]. It protected against the iron-induced oxidative 
stress in vivo and in vitro [32,43,44]. The naringin is active 

against fibrosis, diabetes, dyslipidemia, inflammation, 
osteoporosis, lipodystrophy and cognitive damages [45-48]. 
Naringin has been reported to kill HeLa, AGS and breast 
cancer cells and also effective against Walker’s carcinoma in 
rats [49-52]. Naringin also protected against LPS-induced 
lung damage in mice [53]. It has been found to protect 
against radiation-induced DNA and chromosome damage 
[30,54]. Naringin has been also reported to reduce radiation-
induced oxidative stress in irradiated mice [55]. Naringin has 
been reported to protect against the bleomycin-induced DNA 
damage and cell survival in V79 cells [56]. The aim of this 
review is to focus on the protective effects of naringin 
against the doxorubicin-induced toxicity. 

Figure 2. Molecular structure of Naringin (7-(2-O-(6-deoxy-
alpha-L-mannopyranosyl)-β-D-glucopyranosyloxy)-2,3-
dihydro-4',5,7-trihydroxyflavone). 

EFFECT OF NARINGIN ON DOXORUBICIN 
DISTRIBUTION 

The plasma clearance was studied at 0, 1, 2, 3 and 4 h in rats 
administered with 50 mg/kg Naringin 30 min before 2 mg/kg 
doxorubicin infusion. The results from this study indicate 
that oral administration of naringin did not significantly alter 
the DOX clearance in rat plasma. Similarly, naringin 
treatment did not alter the excretion of doxorubicin in the rat 
urine and bile [57]. This study has reported high 
accumulation of DOX in heart, liver and kidney and naringin 
administration did not significantly change the distribution 
of DOX in these tissues [57]. 

EFFECT OF NARINGIN ON DOX-INDUCED 
CARDIOTOXICITY 

The cardioprotective action of 2.5, 5, 7.5 or 10 mg/kg 
naringin was investigated in mice treated with 15 mg/kg 
DOX. The Naringin was orally administered consecutively 
for five days before DOX treatment and the serum enzymes 
and antioxidants were studied at 30 h post DOX treatment in 
the heart homogenate. The results of this study showed that 
Naringin significantly reduced the cardiotoxicity as 
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indicated by the decline in the lactate dehydrogenase (LDH), 
aspartate aminotransferase (AST/GOT) and alanine 
aminotransferase (ALT/GPT) in a dose dependent manner 
and the maximum reduction was observed for 10 mg/kg 
body weight of Naringin (Table 1). The study of 
antioxidants revealed that naringin elevated glutathione 
(GSH), and activities of catalase and superoxide dismutase 
(SOD) in a dose dependent manner in the heart of mice 
treated with DOX (Table 1). This was followed by a 
significant reduction in the DOX induced lipid peroxidation 

[40]. A study in Wistar rats has shown that 100 mg/kg 
Naringin treatment given for 14 days and 15 mg DOX 
reduced DOX-induced lipid peroxidation and elevated 
catalase and SOD activities and GSH contents in the heart 
tissue (Table 1). The histological evaluation of heart has 
shown that DOX induced inflammation, severe 
vacuolization, myofibrillar loss, and extensive diffused 
fibrosis at 96 h after DOX treatment, whereas Naringin 
administration restored the histology of rat heart to normal 
[58]. 

Table 1. Protection of doxorubicin-induced toxicity by Naringin in various tissues in preclinical models. 

S. No. Species Tissues Parameters References 

1. Mice Heart 

Aspartate aminotransferase 
Alanine aminotransferase 

Lactate dehydrogenase 
Glutathione, 

Catalase, Superoxide dismutase 

[40] 

2. Rat Heart 

Glutathione, Catalase, Superoxide 
dismutase 

Lipid peroxidation 
Histology 

[58] 

3. Rat Embryonic heart 
cells H9c2 

Cytotoxicity, Reactive Oxygen 
Species, 

p38MAPK 
[59] 

4. Rat Liver 
Lipid peroxidation, Glutathione 

Glutathione-s-transferase, Catalase 
Superoxide dismutase 

[60] 

5. Mice Liver 
Lipid peroxidation, Glutathione 

Glutathione-s-transferase, Catalase 
Superoxide dismutase 

[61] 

6. Rat Lung 
Glutathione 

Glutathione-s-transferase, Catalase 
Superoxide dismutase 

[62] 

7. Mice Bone marrow 
Lipid peroxidation, Glutathione 

Glutathione-s-transferase, Catalase 
Superoxide dismutase 

[63] 

8. Rat Bone marrow 
Lipid peroxidation, Glutathione 

Glutathione-s-transferase, Catalase 
Superoxide dismutase 

[64] 

9. Mice Ehrlich ascites 
carcinoma 

Protected against DOX toxicity 
without compromising its 

antineoplastic action 
[40] 

10. Athymic 
mice HeLa cells 

Tumor regression 
Reduced toxicity on Heart, liver and 

kidney 
[65] 

11. Mice Bone marrow Micronuclei [66] 

12. Mice Heart 
Liver DNA adducts [40] 

Embryonic rat heart cells H9c2 treated with 5 μmol/l DOX 
for 24 h induced cytotoxicity in these cells, whereas 
pretreatment of H9c2 cells with 0.1, 1, 10 and 20 μmol/l 
Naringin for two h before DOX treatment significantly 
reduced  the  DOX-induced  cytotoxicity  in  a  Naringin  

concentration dependent manner. The optimum effect was 
observed at 1 μmol/l Naringin. 1 μmol/l Naringin also 
reduced the formation of reactive oxygen species (ROS) 
triggered by DOX treatment (Table 1). Naringin treatment 
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of H9c2 cells also reduced DOX-induced apoptosis in these 
cells by suppressing p38MAPK [59]. 

EFFECT OF NARINGIN ON DOX-INDUCED LIVER 
TOXICITY 

Albino rats injected with 5 mg/kg DOX led to a significant 
increase in lipid peroxidation and reduction in the GSH 
contents and activities of GST, catalase and SOD, whereas 
pretreatment of rats with 2 mg/kg body weight of naringin 
before DOX administration significantly increased the 
amount of GSH and activities of GST, catalase and SOD and 
decreased lipid peroxidation in their livers (Table 1) [60]. In 
another study mice injected with 1, 5 or 10 mg/kg of DOX 
and treated with Naringin at a dose of 10 mg/kg one h before 
or after DOX treatment showed that DOX treatment 
enhanced the lipid peroxidation in a dose dependent manner 
and reduced the GSH contents and activities of catalase, 
GST and SOD in a similar fashion. Treatment of mice with 
Naringin 1 h before or after DOX administration 
significantly reduced lipid peroxidation and augmented the 
activities of catalase, GST and SOD and GSH contents 
(Table 1). The effect of pretreatment of Naringin was 
greater than the post treatment [61]. 

EFFECT OF NARINGIN ON DOX-INDUCED LUNG 
TOXICITY  

The effect of 2 mg/kg Naringin was studied in albino rats 
administered with 5 mg/kg DOX. The DOX administration 
induced biochemical toxicity in the rat lung indicated by a 
time dependent decline in the GSH concentration and 
decrease in the GST, catalase and SOD activities, where a 
maximum reduction in all biochemical endpoints was 
detected at 2 h post-DOX treatment. Treatment of rats with 2 
mg/kg Naringin significantly increased the activities of GST, 
catalase and SOD followed by a rise in the glutathione 
contents (Table 1). A greatest elevation was observed at 2 h 
post-DOX treatment [62]. 

EFFECT OF NARINGIN ON DOX-INDUCED BONE 
MARROW TOXICITY 

Bone marrow suppression is a dose limiting factor in the 
optimal use of DOX as a chemotherapeutic agent. The 
ability of Naringin to reduce DOX-induced bone marrow 
toxicity has been studied in mice given different doses of 
DOX before and after Naringin treatment at different times. 
The mice injected with 1, 5 or 10 mg/kg DOX led to a 
significant rise in the lipid peroxidation followed by a 
significant decline in the GSH and activities of GST, 
catalase and SOD. Naringin treatment at a dose of 10 mg/kg 
one h before or after DOX administration resulted in a 
significant decline in the lipid peroxidation at different post-
treatment times accompanied by a significant rise in the 
GSH contents and activities of GST, catalase and SOD 
(Table 1) [63]. The albino rats administered with 5 mg/kg 
DOX showed an increase in the lipid peroxidation and 
attrition in the GSH concentration and activities of GST, 

catalase and SOD from ½ to 2 h post DOX-treatment in the 
bone marrow. The rats treated with 2 mg/kg Naringin daily 
for consecutive three days before administration of 5 mg/kg 
DOX reduced the Lipid peroxidation at ½, 1 and 2 h post-
DOX treatment. This was accompanied by a significant rise 
in the GSH contents, and activities of GST, catalase and 
SOD (Table 1) [64].   

EFFECT OF NARINGIN ON THE ANTICANCER 
ACTIVITY OF DOX 

DOX treatment was found to regress Ehrlich ascites tumor in 
Swiss albino mice accompanied by the induction of toxicity 
in the heart and liver. Administration of 10 mg/kg Naringin 
before DOX-administration reduced the cardiac and 
hepatotoxicity without significantly altering the anticancer 
activity of DOX in the tumor bearing mice (Table 1) [40]. 
Similarly, a study in nude mice bearing HeLa cells has 
revealed that treatment of mice with 5 mg/kg DOX reduced 
tumor volume however; it was accompanied by toxic effect 
on heart, liver and kidney. The treatment of tumor bearing 
mice with 20 mg/kg of naringin concomitantly increased the 
anticancer activity of DOX and at the same time reduced the 
DOX-induced cardiotoxicity, hepatotoxicity and 
nephrotoxicity. The treatment of nude mice with both DOX 
and Naringin was also able to arrest body weight loss 
triggered by DOX alone, whereas in vitro study in HeLa 
cells showed that combined treatment of DOX and naringin 
more efficiently arrested cell proliferation than either 
treatment alone (Table 1) [65]. 

EFFECT OF NARINGIN OF DOX-INDUCED DNA 
DAMAGE 

DOX is well-known to induce damage to cellular DNA. 
Treatment of mice with 5, 10 and 15 mg/kg DOX caused a 
dose dependent rise in the micronuclei in the polychromatic 
and normochromatic erythrocytes of bone marrow cells 
followed by the reduction in the cell proliferation as 
indicated by a decline in the polychromatic and 
normochromatic erythrocyte ratio. The highest number of 
micronuclei was observed at 48 h in the polychromatic and 
72 h post-DOX treatment in normochromatic erythrocytes. 
Treatment of mice with different doses of Naringin before 
DOX administration significantly attenuated the frequency 
of micronuclei in both the polychromatic and 
normochromatic erythrocytes at all post DOX treatment 
times accompanied by a significant rise in the polychromatic 
and normochromatic erythrocyte ratio (Table 1) [66]. The 
DOX has also been reported to induced DNA adducts at 
molecular level in the liver and heart of mice, whereas 
Naringin treatment attenuated the DOX-induced DNA 
adduct formation significantly (Table 1) [40]. 

MECHANISM OF ACTION 

Various mechanisms are involved in the DOX induced 
cytotoxic effects. However, one of the most important 
mechanisms by which DOX induces cell killing and it is also 
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responsible for its toxic effects in various organs is the 
induction of free radicals or reactive oxygen species (ROS) 
by DOX. The metabolic activation of DOX into free radical 
results in its reaction with molecular oxygen leading to the 
formation of superoxide radicals through redox cycling in 
vivo [67,68]. DOX interacts with NADPH and increase the 
production of superoxide radicals by activation of Nox-2-
NADPH-oxidase and NADPH cytochrome P450 and 
downregulation of NAD(P)H:quinone oxidoreductase-1 
[69,70]. The DOX is known to accumulate iron in the 
mitochondria [21] and the superoxide radicals thus produced 
react with hydrogen peroxide in the presence of iron to 
produce highly reactive and dangerous hydroxyl radicals by 
Haber-Weiss reaction. These hydroxyl radicals damage 
DNA and proteins and induce lipid peroxidation inflicting 
toxic effects to the cells [71]. The doxorubicin interacts with 
nucleic acids by inter strand cross-linking, equilibrium 
binding, permanent single covalent attachment, reversible 
covalent binding, DNA groove and base specific binding, 
metal ion sequestration and subsequent DNA binding and 
intercalation with concomitant supercoil relaxation and 
duplex extension. The redox cycling of DOX causes DNA 
single strand breaks by phosphotriester formation [72]. The 
DOX-induced oxidative stress is due to the repression of 
Nrf2 signaling pathway [73] leading to increased lipid 
peroxidation and reduction in GSH, catalase, SOD and GST. 
The DOX is known to mediate its toxicity on cancer cells by 
inhibiting topoisomerase-II enzyme, which causes DNA 
single as well as double strand breaks [74]. The DOX 
triggers the formation of 8-Oxo-2'-deoxyguanosine DNA in 
adducts the heart and liver of mice [40]. The DOX induces 
DNA adducts independent of topoisomerase II suppression. 
The induction of doxorubicin-DNA adducts triggers 
activation of caspases that leads to apoptosis [75]. DOX has 
been found to overexpress p38 mitogen-activated protein 
kinase (MAPK)/nuclear factor-κB (NF-κB), COX-2, iNOS, 
TNF-α, TLR4 signaling and nitric oxide causing cell killing 
[8,76-78]. It also activates DNA damage response by 
upregulating phosphorylation of ATM, P53, CHK1, CHK2 
and γH2AX genes [79]. The DOX-induced hydroxyl radicals 
play a major role in the activation of ATM pathway and cell 
cytotoxicity [80]. The activation of ATM dependent Chk2-
DNA damage response pathway by DOX causes arrests of 
cells in G2+M phase of the cell cycle leading to cytotoxicity 
[81]. The DOX has been reported to activate poly (ADP-
ribose) polymerase (PARP) in vitro and in vivo and 
upregulate p53 to trigger cytotoxicity [66,82,83]. DOX also 
impairs electron transport in the mitochondria [84]. 

The reduction in DOX-induced toxic effects by Naringin 
may be due to its ability to target several pathways triggered 
by DOX to induce cytotoxicity. The Naringin has been 
reported to scavenge various free radicals [29,30,85] and 
presence of Naringin would have suppressed the DOX-
induced free radicals that may have reduced toxic effects of 
DOX. The iron chelating property of Naringin [31-33] 

would have restricted the availability of iron leading to 
inhibition of the formation of DOX-induced hydroxyl 
radical. This would have down modulated the ATM 
dependent pathway reducing the cytotoxic effect as well as 
DNA damage triggered by DOX. Naringin suppresses the 
ROS mediated MAPK (p38 MAPK, ERK1/2 and JNK) 
signaling pathway [86]. It also inhibits NF-κB signaling and 
COX-2 pathways and upregulates Nrf2 pathway [87-89] 
leading to abrogation in the DOX-induced decline in various 
antioxidants including GSH, GST, catalase, SOD, and 
glutathione peroxidase (GSHpx). The attenuation of DOX-
induced cytochrome P450 activity by Naringin may have 
also contributed to reduced toxicity of the former as the 
Naringin has been found to inhibit cytochrome P450 activity 
[90,91]. The suppression of PARP activity by Naringin [40] 
is also responsible for attrition of DOX-induced cytotoxicity. 
Naringin is metabolized into its aglycone form Naringenin 
by human intestinal bacteria [92,93], which attenuates the 
expression of NF-κB, MAPK, TNF-α, IL-6, TLR4, inducible 
NO synthase (iNOS), NADPH oxidase-2 (NOX2) and COX-
2 which are all overexpressed by DOX. The restoration of 
topoisomerase-II activity by Naringin may have also played 
an important role in reducing the DOX-induced cytotoxicity. 

CONCLUSION 

DOX is an important antineoplastic drug used for the 
treatment of several malignancies either alone or in 
combination with other chemotherapy agents. The main 
impediment in the optimum utilization of DOX in cancer 
therapy is induction of cardiotoxicity, myelosuppression, 
pulmonary, hepato- and nephro-toxicities in patients 
receiving this drug either alone or in conjunction with other 
chemotherapeutic agents. Naringin treatment has reduced 
toxicities in heart, lung, liver, kidney and bone marrow in 
preclinical systems. The main mechanism of DOX-induced 
toxicity is due to its ability to trigger the formation of ROS 
that stimulate a host of genes including NF-κB, COX-2, 
MAPK, iNOS, TNF-α, TLR4, ATM, p53, CHK1, CHK2, 
γH2AX and PARP that induce DNA damage and activation 
of caspase cascade causing cells death due to apoptosis or 
necrosis. The use of naringin has been found to reduce 
biochemical toxicities in heart, kidney, liver, lung and bone 
marrow. This reduction in the DOX-induced toxicity by 
Naringin is mediated by attenuation of DOX-induced free 
radicals and suppression of various proteins-induced by 
DOX listed above. The Naringin may have also suppressed 
DOX intercalation into the DNA and abrogated the 
topoisomerase-2 inhibition. The results from preclinical 
studies indicate that Naringin deserves attention as a drug 
that can be used in combination with DOX to reduce the 
toxic effect of latter. 
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