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In 1929, Fåhraeus (1888-1968) have reported on a 
rheological effect in microwessels [1]. When blood was 
flowed from a large diameter tube into a capillary tube, the 
average hematocrit of the capillary blood was less than that 
of the blood in the larger tube. This phenomenon was called 
the the Fåhraeus-effect. The effect was interpreted as a 
feature of particulate flow, when the hematocrit in the 
capillary is a function of radial position of erythrocytes. An 
article was later published by Fåhraeus and Lindquist [2], 
which was demonstrated that if blood flows through glass 
capillary tubes of decreasing radius, a decrease in hematocrit 
was accompanied by a progressive decrease in apparent 
blood viscosity (the “Fåhraeus-Lindqvist effect”). (By the 
way the term “apparent” (or “effective”) viscosity is widely 
used for the derived value of blood viscosity and reflects the 
viscosity of a Newtonian fluid that would yield the same 
flow under otherwise identical conditions, for clarity). 

Some later works showed that mean velocity of the red 
blood cells in capillary tubes is higher than the mean bulk 
flow velocity [3,4]. The erythrocytes are moves away from 
the boundary toward the channel center, while the 
suspending plasma fluid is displaced to the cell free layer 
regions left by the migrating cells. It results in the formation 
of a cell-free layer next to the tube wall (skimming). Thus, in 
small tubes the plasma acts as a lubricant layer [5-9]. 
Subsequent studies have shown that apparent viscosity 
continues to decline at diameters that correspond to the 
arteriolar segments of the systemic vascular tree, where the 
majority of the total peripheral resistance resides and is 
actively regulated in vivo. The Fåhraeus-Lindqvist effect 
thus reduces microvascular resistance, thereby maintaining 
local tissue perfusion at a relatively lower blood pressure 
[10]. 

There are some works on the practice of theoretical 
modeling of the effects [11-13]. It is assumed that in the 
observed effects in microvessels aggregation properties of 
erytrocytes participate [5,14-17]. It is worth noting that shear 
rate in vessels of asuch diameters is much higher than the 
threshold for complete destruction of aggregates (50 C-1) 

[18,19]. Given this circumstance, such participation is very 
hypothetical [20,21]. 

The effects considered are reduced to a parallel decrease in 
hematocrit and blood viscosity in microvessels. However, it 
is worth noting that the redistribution of erythrocytes in the 
bloodstream according to a widely admitted hypothesis does 
not change the ratio of the solid and liquid phases in the 
blood wessel. There is one paper, where has been shown 
that, contrary to a widely admitted hypothesis, the Fåhraeus-
effect does not account for the Fåhraeus-Lindqvist effect 
[22]. The real reason for the change in hematocrit and 
plasma viscosity the blood flowing in small vessels, remains 
enigmatic. In our deep conviction, events in the microworld 
of the microwessels occur as follows. Given that the 
erythrocyte membrane is inextensible, the developing shear 
stress in small vessels causes a forced change in the shape of 
oxygen carriers with a decrease in their volume while 
maintaining the surface area. Due to these changes, under 
the influence of a pressure gradient the liquid phase moves 
from the red blood cell into the lumen of the capillary. The 
hematocrit and viscosity of the blood in the vessel are 
reduced accordingly. These transformations are reversible. 
When the red blood cell leaves the capillary, shear 
deformations decrease, the shape of the cell is restored and 
water with electrolytes returns inside the red blood cell [23]. 

The work was made as a part of the state assignment 
“Physiological and biochemical mechanisms of homeostasis 
and their evolution”. 
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