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ABSTRACT 
This review is about the functional and automatic segmentation methods for biomedical imageries. To improve the desired 
results, the data density method was incorporated and is very significant in calculating even in pixels. This paper successfully 
describes combinational technique for solving the segmentation problem of magnetic resonance imaging (MRI) datasets. 

Reliable and robust automatic method of image 
segmentation is still an open problem. To alleviate the 
undesired consequences from biomedical image 
segmentation processing, data density functional method 
made an avenue for measuring the desired connectivity and 
significance from pixel points within imageries and even 
within image clusters using the concept of energy functional 
densities, and then the corresponding clustering 
morphologies can be visually exhibited in an energy space 
[1]. By employing any sophisticated probability density 
estimator, the most probable cluster number and the most 
probable corresponding cluster boundaries can be extracted 
simultaneously. Furthermore, as similar as the concept of 
level set [2,3], the components of the imagery of interest 
located within similar energy region can be segmented by 
labeling their corresponding energy values. Eventually, these 
components will be either merged or segmented by 
considering their connectivity levels. 

Several suspect technical predicaments might degrade the 
performance or functions of contemporary segmentation 
methods. For instance, in modern biomedical imaging 
processes, whatever gray level-typed images, coloring 
images, or sparse matrix images, each successive digitized 
image ideally needs to be aligned with previous and 
subsequent images [4-8]. In the duration of image 
processing, the images might suffer rotating or stretching 
when they were processed in measurement and imaging. 
Meanwhile, the components in the same tissue volume might 
also have different pixel intensity within films. Thus, the 
degradation of uniformity and contrast of the pixel intensity 
would limit the performance of the segmentations. 

In other hands, labeling of the pixels is also a considerable 
problem [5,7,9-19]. For instance, the snaking neurons in a 
Brainbow system [1] stitch confusedly intertwining patterns, 
thus the chrominance within an imaging voxel would be 

possibly contaminated by adjacent components. Severe color 
crosstalk tends to undesirably penalize spurious branches 
and premature terminations when the image resolution is 
compromised [1,6,13,20]. Saturated luminous intensity 
within the voxels can probably cause not only topological 
errors on neural clustering but also the bogus neural 
connectivity. The ambiguous regions within the pixels due to 
the mentioned problems would cause the difficulty of image 
clustering and then the inaccuracy segmentation. 

The merit of employing the data density functional method 
might elegantly solve the mentioned predicaments. By 
mapping the image pixel intensity into a specific energy 
space, the degradation of uniformity and contrast of the pixel 
intensity might be efficiently alleviated by introducing the 
action of connectivity from potential energy functional 
density. Meanwhile, the image pixels having color 
contamination and intensity saturation would be regularized 
by introducing the kinetic energy functional density. In a 
nutshell, by employing the data density functional method 
associated with the intrinsic properties of connectivity and 
significance within biomedical pixel points, the paper 
proposes a method of segmentation for biomedical imageries 
of interest. The data density functional method, based on the 
mathematical framework of quantum chemistry, has a 
sophisticated and pragmatic characteristic to easily connect  
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to the theoretical framework of contemporary methods in the 
field of machine learning. Thus, the relevant techniques 
from machine learning methods can be used to reinforce the 
performance of the data density functional method. 

In the paper, we successfully used the proposed 
combinational technique for solving the segmentation 
problem of magnetic resonance imaging (MRI) datasets. The 
connectivity and significance of the employed MRI dataset 
were respectively estimated by means of the corresponding 
data functional densities [1]: 

 𝑢𝑢[𝜌𝜌] = � 𝑀𝑀𝑛 |𝒓𝒓′ − 𝒓𝒓𝑛′ |𝒓𝒓′≠𝒓𝒓𝑛′⁄
𝑊×𝐻

𝑛=1

,  (1) 

and 

[𝜌𝜌]=𝜋𝜋2𝜌𝜌  (2) 

Where, 𝑊𝑊 and 𝐻𝐻 are respectively the width and height of an 
image, 𝒓𝒓′ and 𝒓𝒓′are respectively the positions of the 𝑛𝑛th pieel 
and the observation point and 𝑀𝑀𝑛𝑛 is the corresponding 
normalized intensity. Then, the input pixel intensity was: 

 𝜌𝜌(𝒓𝒓′) = � 𝑀𝑀𝑛 × 𝛿(𝒓𝒓′ − 𝒓𝒓𝑛′ )
𝑊×𝐻

𝑛=1
  (3) 

Eventually, the employed MRI dataset was segmented by 
considering the connectivity levels of components: 

ℒ[𝜌𝜌]=𝛾𝛾2𝑡𝑡[𝜌𝜌] − 𝛾𝛾𝑢𝑢[𝜌𝜌]  (4) 

 𝛾𝛾 =
1
2
〈𝑢𝑢[𝜌𝜌]〉
〈𝑡𝑡[𝜌𝜌]〉 .  (5) 

The consequence is shown in Figure 1, wherein the mean 
value of the ℒ[𝜌𝜌] was used to be a threshold to segment the 
skull and tumor from the normal tissues. Main parts of the 
image as shown in Figure 1a, such as skull and tissues, were 
totally segmented as well as the other parts of brain tumors. 

The skull in Figure 1c, normal tissues in Figure 1e and the 
tumor in Figures 1b and 1d were successfully segmented 
using the data density functional method. The MRI dataset 
was sourced from the open data [21]. The Figure 1e also 
had shown a limitation of the proposed combinational 
method. As shown by the arrows, the residual edges from 
tumor and skull are respectively still mixed with the brain 
tissue. 

Figure 1. The segmentation results of a MRI dataset [21] using the proposed combinational method. The dimension of the 
original MRI data (a) is 205*246 in pixel space, then the result of tumor recognition is shown in (b). (c) and (d) respectively 
show the segmentation results of skull and tumor. (e) reveals the technical limitation of the proposed method that the residual 
edges from the other components still can be identified. 
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