1024
Views & Citations
Immunotherapeutic
treatments for malignant cancers have revolutionized the medical and scientific
fields. Lymphocytes engineered to display chimeric antigen receptor (CAR)
molecules contribute to the exciting advancements that have stemmed from a
greater understanding of cell structure and function, biological interactions,
and the unique tumor microenvironment. CAR T cells circumvent the unique immune
evasion capability of tumors by acting in a major histocompatibility complex
(MHC) independent manner. Various factors contribute to the efficacy of CAR
therapy, including CAR structure, gene transfer strategies, in vitro culture system, target
selection, and preconditioning regimens. While recent clinical trials have
shown promising success, cytotoxicity and other various challenges need to be
addressed before CAR therapy can reach its full clinical potency. This review will
discuss factors associated with CAR therapeutic success and the difficulties
that continue to be a focus of research around the world.
Keywords: Cancer immunotherapy, Chimeric antigen
receptor, Persistence, Tumor antigen, Chemotherapy.
INTRODUCTION
The
National Cancer Institute estimated over 1.5 million new cancer cases and more
than five-hundred thousand cancer deaths in the United States during 2016 [1].
As scientists race to find effective treatments for these destructive
malignancies, the CAR T cell field proves especially promising. The basic
concept of chimeric antigen receptor (CAR) T cell therapy involves directing a
patient’s own T cells to kill tumor cells which express a specific antigen.
Tumor cell recognition by CAR T cells is based on antibody and antigen rather
than T cell receptor (TCR) and major histocompatibility complex MHC. CAR T cell
therapy has shown remarkable clinical results, especially for hematological
malignancies. This review will discuss the factors that potentially influence
CAR therapeutic efficacy in clinic trials.
CAR T Cell Subsets
T cells
can be divided into many subsets, each expressing varying persistence and
functionality. Theoretically, all cell subsets can be used for CAR cell
engineering. However, given the clinical feasibility, the most common
formulation used in current clinical trials are CD4+ T-helper cells
plus cytotoxic CD8+ T cells. CD4/CD8 CAR cell efficacy, cytokine
production, antitumor activity, and proliferation depend on subpopulations and
ratios used [2]. Preclinical studies indicate that both CD4 and CD8 work
together to eliminate tumors. CD8 T cells are the most effective cytotoxic
cells in terms of tumor elimination, whereasCD4 T cells not only produce the
cytokines that are critical for CD8 T cell function, but they also kill tumor
cells directly.
Both CD4
and CD8 T cells can be further divided into many subpopulations based on their
function or in vivo persistence.
For
example, regulatory T cells (Treg) can suppress immune response by secreting
immunosuppressive factors or by delivering negative signals to the T cells. A
recent study using CAR engineered Treg cells showed that these cells could be
used for autoimmune disease treatment [3]. Based on in vivo migration and persistence, T cells can also be divided into
central memory and effector memory T cell subsets.
Current
studies support the theory that central memory T cells (Tcm) are a
more desirable T cell subset for CAR T cells therapy because of their prolonged
in vivo persistence [2,4-6].
Allogeneic CAR T cells are attractive because they are “off-shelf” CAR T cells
and can be produced with standard criteria and better quality control.
Several
groups are using virus specific T cells for adoptive T cell therapy. Virus
specific T-cells (VST) are well tolerated by patients, do not lead to graft
versus host disease (GVHD) even if the cells are donor-derived, and have been
shown to display antitumor activity [7]. VST cells can be stimulated by viral vaccines
and are most effective soon after lymphodepletion when viral infections are
most likely to occur [7]. They might persist even longer than autologous T
cells because of the persistent antigen signal transduced by TCR. However, due
to the prolonged culture time needed to select virus specific T cells, the
quality of the cells might be impaired [8-10].
Another
prospective CAR host is the Natural Killer T-cell (NKT) [11]. CD1D
Va24-invariant NKTs are promising because their monomorphic nature limits toxicity
and presents a safe approach to donor derived T cell engineering without GVHD
[12]. iNKT CAR engineering faces the challenge of sufficient ex vivo expansion
due to the limited amount of cells occurring naturally in the body, but
researchers developing a greater knowledge of these cells may prove iNKT CAR
engineering very effective [11,13].
CAR Structure
CAR
engineered constructs commonly include an extracellular domain for antigen
recognition, a trans membrane domain, and an intracellular domain that triggers
cell function (Figure 1) [14-16].
The structure of these parts plays a crucial role in effective CAR engineered
cancer treatment. The extracellular domain of a CAR construct typically
incorporates a single-chain variable fragment (scFv) and a spacer. The antigen
specific scFv, cloned from a hybridoma, is made up of monoclonal antibody heavy
and light chains connected by a linker [17]. While many studies use murine
scFvs, humanized or fully human scFvs have been shown to express similar
antitumor activity and enhanced persistence [18,19]. Preclinical studies
suggest that mouse derived scFvs might actually induce an immune response
against the T cells themselves, resulting in the depletion of murine based CAR
T cells.
Just as
the most effective scFv varies with tumor type, optimal spacer design also
depends on the specific tumor epitope being targeted [20,21]. Carefully devised
spacers offer flexibility and enhanced antigen binding, but spacers used
incorrectly can inhibit CAR cell efficacy in
vivo [20,21].
Intracellular
signaling domains trigger cell function. Typically, a CD3zeta moiety is used in
conjunction with one (second generation) or two (third generation)
costimulatory domains [22]. Common costimulatory domains include OX-40, CD-28,
and 4-1BB [22,23]. CD-28 invokes heightened cytokine activity but can
contribute to cell exhaustion [24,25]. Ox-40 and 4-1BB, both members of the
tumor necrosis factor (TNF) family, enhance persistence for CD4 cells and CD8
cells, respectively [24,25]. ICOS based CAR T cells can induce IL-17-like CD4 T
cells and mediate strong antitumor activity in humanized mice models [26].
While most studies find second generation CARs are more potent than first
generation CARs with no costimulatory domain, results of third generation CAR
studies provide conflicting results [19,22,23,27,28]. Optimal CAR design seems
to vary based on the targeted tumor.
Many
studies focus on improving CAR construction in order to enhance binding
capability, therapeutic safety, and in
vivo immune stimulation. For example, bispecific OR-gate CARs are a novel
method for improving CAR cells’ ability to bind to tumor specific antigens
[16,29]. This molecule recognizes two distinct antigens and can be fully
activated by either or both, reducing the escape of antigen negative tumor
cells and diminishing the risk of relapse [16]. The “TanCAR” molecule utilizes
two tandem scFv regions and is able to target two antigens, mitigating the risk
of tumor antigen escape [29,30]. Clinically, many patients who receive CD19
targeted CAR T cell therapy experience CD19 negative relapse. For this reason,
such multiple antigen targeting CAR structures could be extremely useful for
inhibiting antigen negative relapse.
Many new
alterations to the traditional CAR structure enhance the safety of CAR
treatment. iCARs have a dominant inhibitory signal that is activated upon
recognition of healthy tissue antigen [31]. Masked CARs have an antigen binding
domain that is sterically blocked until exposure to the protease-enriched tumor
microenvironments, in which the peptide mask is removed and CAR function commences
[31]. “Off-target” toxicity can be lethal for cellular therapy, but the risk
can be reduced dramatically if redirected T cells can target two different
antigens. Roybal et al. developed a novel “precision dual-receptor circuit” CAR
using synthetic Notch based structure, in which the activation strictly depends
on the presence of two antigens [32]. Trans CARs display two different CAR
molecules with distinct specificities in a single cell, physically separating
the CD3z activation molecule from the costimulatory domain. Because optimal CAR
function is only activated upon recognition of both antigens simultaneously,
this trans signaling approach may prove to limit on-target, off-tumor toxicity
while retaining the efficacy of a second generation CAR [33].
Some
recently developed CARs have manually controllable persistence in order to
enhance safety. Switchable CARs are dependent on the infusion of switch
molecules for activation, and cell function can only begin with the formation
of a complex between the CAR cell, switch, and tumor antigen [34,35].
Implementation of suicide genes also enhances the safety of CAR infusion by
offering controlled persistence of CAR cells [36]. For example, herpes simplex
virus-thymidine kinase (HSV-TK) generates CAR cell susceptibility to antiviral
medication; inducible caspase-9 (iCasp-9) prompts apoptosis upon ligation with
a dimerizing drug; and a truncated EGFR (tEGFR) gene invokes antibody dependent
cellular cytotoxicity [31]. ON-switch CARs were designed to act only in the
presence of small, injected molecules, minimizing the risk of toxicity induced
by cellular therapy. This approach can be extremely useful in a clinical
setting. However, without instant antigen exposure, the in vivo persistence of ON-switch CAR T cells has yet to be
determined [37]. Another novel modification is the inclusion of Step-tagII in
the CAR or TCR structure, which allows for in
vivo transgenic T cell enrichment, stimulation, and monitoring [38].
Other
novel CAR construct ideas focus on stimulating the immune system. T cells
integrated with bispecific T cell engagers (BiTEs) are engineered to secrete
BiTEs (Blinatumomab) upon tumor antigen recognition. BiTEs have antigen
specific scFvs fused to anti-CD3 recognition domains that can stimulate bystander
T cells when secreted from the infused cells [39]. T cells redirected for
universal cytokine-mediated killing (TRUCKs) express IL-12 upon activation,
attracting innate immune cell responses to the tumor lesion [40]. Both BiTEs
and TRUCKs incorporate immune stimulating mechanisms that recruit different
cells in the immune system to work together while fighting tumors, paving the
way for solid tumor CAR therapy.
Gene Transfer Techniques
Gene
transfer technologies allow scientists to engineer lymphocytes with the desired
CAR structure. While a variety of these methods, both viral and non-viral, are
capable of introducing CAR constructs in T cells, each technique has advantages
and disadvantages depending on the investigative purpose.
Non-viral
methods for gene transfer include DNA/RNA electroporation and the
transposon/transposase system. Relative to viral alternatives, these vectors
are cheap and easy to prepare, though they often demand longer culture times
[41]. Electroporation makes cells temporarily permeable, allowing genetic
material to pass through the membrane. The physical disturbance to the cell
utilized in electroporation can cause cell damage, and gene transfer efficiency
is only 16-57% for DNA plasmids [41]. However, transgene expression following
electroporation can be greater than 90% for mRNA [42]. Electroporated genes are
generally only expressed for a short duration due to low genome integration, so
this technique can be useful for avoiding on-target/off-tumor toxicities [43].
The Sleeping Beauty (SB) transposon system has a 60% efficiency [44], and a
technique combining electroporation and SB transposon has shown 90% specific
killing of target cells in vitro
[45,46]. Despite the high transduction efficiency, this system requires a
four-week culture [45]. The long culture times associated with non-viral gene
transfer methods may impair T cell function and in vivo persistence.
While
non-viral techniques show great promise, viral vectors, including
gammaretrovirus and lentivirus, are the most common methods of gene transfer in
CAR research studies (Table 1).
These vectors result in long term expression of transferred genes due to
successful integration into the genome [41]. Retroviral vectors typically have
a transduction efficiency of 50-68% [47-49], but a recent study has shown that
an improved protocol can result in a transduction efficiency of greater than
90% in murine models [48]. Lentiviral vectors are able to transduce
non-dividing cells [41] and have transduction efficiencies as great as 80%
[50]. Moreover, lentiviral vectors are less susceptible to gene silencing
because they integrate into transcriptionally active regions [47]. However,
previous clinical trials demonstrated that virus mediated gene integration was
able to induce clonal expansion of hematopoietic progenitors. This safety issue
still needs to be addressed, and additional advancements regarding gene
transfer techniques are crucial for reducing the cost in the clinical setting.
In vitro Culture System
CAR T
cell in vitro culturing can be
divided into five steps: T cell collection and purification, activation,
transduction, expansion, and reinfusion (Figure
2). Suitable T cells collected from blood or tissue samples are not
naturally present in large enough numbers for successful CAR therapy. In vitro expansion of these cells is
necessary, yet prolonged expansion can generate harmful effects on the cells’ in vivo persistence [51]. Different expansion
protocols present varying strengths and weaknesses, and CAR success depends on
the utilization of proper methodology.
The most
common component of these methods is the anti-CD3 antibody. This molecule
produces a potent proliferative signal, but it requires a costimulatory signal
such as anti-CD28 in order to avoid anergy [51]. Anti-CD3/CD28 stimulation is
often propagated through the use of magnetic beads coated in these antibodies.
Bead stimulation results in extensive proliferation of T cells [51], and when
cells are further expanded in interleukin (IL)-7 and IL-15 they display strong
effector function and maintain the preferred stem/memory phenotype [52]. For
long culture times, IL-21 is considered beneficial due to its role in
regulation of telomerase and T cell exhaustion [46,53,54]. The frequency of
CD4+ and CD8+ memory stem T cells is greatest following a short stimulation,
while extended stimulation leads to fewer memory markers and swift
differentiation [55]. Additional research warns that high CD3/CD28 bead to cell
ratios yield considerably increased levels of activated cell apoptosis [56]. In
contrast, culture conditions incorporating soluble anti-CD3 plus irradiated
mixed mononuclear cells (MNCs) are highly effective in expanding CD8 cells
[51].
Another
efficient culture technique involves artificial antigen presenting cells
(aAPCs) [46,57]. aAPCs offer an affordable alternative to bead based expansion
while mimicking natural dendritic cell stimulation. This technique is
especially useful for long cultures times which require several rounds of
stimulation. Notably, a recent study indicated that T cells from acute
lymphoblastic leukemia (ALL) and non-Hodgkin lymphoma (NHL) show different in vitro expansion capacity upon
anti-CD3/anti-CD28 beads stimulation. However, interleukin-7 (IL-7) and IL-17
can rescue the in vitro expansion
ability of T cells from NHL patients [58]. Therefore, optimal culture
conditions should be carefully considered based on the patient’s condition and
tumor types. In order to meet the cGMP
requirements, standardized culture systems should be set up as soon as possible.
In vivo Persistence
Evidence
shows that prolonged patient survival is highly associated with CAR T cell
persistence [59]. Different measures prove influential in extending periods of
persistence, including variations in cell subsets utilized, the CAR construct
itself, and preconditioning regimens employed. T cell subsets from which CAR
cells are derived affect both the persistence and function of infused cells [60].
Memory T cells, especially central memory T cells (Tcm), and less
differentiated naïve cells and stem central memory T cells (Tscm)
yield the longest in vivo survival
[2,61,62]. Interestingly, culture systems initiated with antigen-experienced T
cells could impair the in vivo
persistence of an entire cell population [63]. On the other hand, the addition
of costimulatory domains such as CD28 or 4-1BB in second generation CAR
constructs enhances cell persistence [12,22,23,43]. So far, 4-1BB CAR T cells
have shown the best in vivo
persistence compared to CAR cells with other costimulatory factors, which can
be explained by the different metabolic patterns [64-66].
To
efficiently eliminate tumor cells, reinfused CAR T cells should be able to: 1) migrate
to the tumor site and infiltrate into tumor (for solid tumors); 2) resist
immunosuppressive signals and respond to the tumor antigen; and 3) expand
locally and differentiate into effector T cells. Fortunately, previous studies
have already shown that IV infused CAR T cells are able to migrate to the tumor
sites and expanded locally [67]. However, regional or intratumoral delivery of
CAR T cells has shown superior therapeutic effects for solid tumor treatment,
suggesting that the migration and tumor infiltration capacity of locally
infused cells are far more optimal than IV delivered treatment [68-70].
T cell
persistence is necessary for tumor elimination, but the immune suppressive
microenvironment created by tumor cells can easily induce T cell exhaustion
[71]. For example, some leukemia tumor cells can secrete indoleamine
2,3-dioxygenase (IDO), which suppresses CAR T cell function [72]. Similar to
chronic virus infection, persistent tumor antigen stimulation induces T cell
exhaustion. This impairs T cell persistence, especially for patients who suffer
from a high tumor burden or a solid tumor [73]. However, the exhaustion of CAR
T cells in recent clinical trials due to strong CD28 costimulatory factor and
TCR signaling is most likely the reason severe GVHD development is so rare
[74]. Despite this theory, improving the T cells’ ability to avoid tumor
antigen induced T cell exhaustion is becoming a popular field of study.
Target Selection
Many
factors contribute to the success of CAR cells, but persistence and
proliferation are futile and dangerous unless the correct target antigen is
chosen. On-tumor/off-target toxicities caused by unsuitable targets are a
serious concern in CAR T cell therapy. Adverse effects are triggered by the
expression of low levels of the target antigen on off-target organs. Several
promising studies demonstrated that using affinity-tuned scFvs can result in
the selective targeting of antigens that are over expressed on tumor cells
while sparing normal cells with low expression of the antigen [75,76]. Lytic
activity of CAR cells initiates with ~200 antigen molecules per target cell,
and cytokine production commences at an antigen density of a few thousand
molecules [77]. For this reason, it is very important that healthy tissue
displays a minimal amount of target antigen [75,76].
In
hematologic malignancies, tumor cells and normal cells express the same,
specific antigen. Therefore, the on-target toxicity is predictable and
generally manageable. For example, the
most common CAR T cell target is CD19, which is expressed on both healthy and
malignant B cells. Fortunately, anti-CD19 CAR treatment induced
Hypogammaglobulinemia has been counteracted by the administration of
immunoglobulin replacement therapy [78,79].
Many
types tumor cells share common tumor antigens. For example, pancreatic,
prostatic, and urinary tumors all show positive expression of PSCA [19].
Melanoma lesions, sarcomas, astrocytomas, gliomas, neuroblastomas, and
leukemias all display MCSP [43]. Some studies are focused on identifying tumor
antigens such as cancer-associated Tn-Glyco form of MUC1, which are recently
tested as CAR T cell target for adenocarcinoma therapy adenocarcinoma [80].
However, on-target toxicity in solid tumor treatment can be extremely dangerous
as most solid tumor antigens are actually normal antigens that are over expressed
in tumor cells.
In
addition to the lack of adequate tumor specific antigen, the tumor antigens
that are known can be highly heterogenetic and can easily escape single antigen
targeted therapy. Moreover, some malignant hematological cells can escape CAR T
cells via lineage switching [81,82]. For this reason, CAR T cells that can
target multiple antigens are extremely important for inhibiting tumor relapse.
For example, CD20 targeting CAR T cells might be effective at treating relapsed
CD19 negative B cell leukemias in the future [93]. Neoantigens, which are
encoded by mutated genes and do not appear in healthy tissue, are the most desirable
antigen due to their tumor specific distribution [83]. In addition, neoantigens
include intracellular proteins, opening the possibility of an antigen pool that
is not restricted to the surface of the cell. TCR-like antibody based CAR T
cells utilize an antibody which can specifically recognize peptides and the MHC
complexes. Theoretically, these CAR T cells can recognize intracellular mutant
peptides, but dealing with the specificity is still the biggest challenge
[84-87].
Given
that tumor specific antigens are rare, antigens expressed in tumor and
nonessential tissues (such as CD19, CD20, CD22, BCMA, PSMA, and more) can be
relatively good candidates for CAR T cell therapy [88,89]. Regardless of
whether a cell has a TCR or CAR engineered molecule, the antigen it recognizes
should be abnormally up-regulated in tumor cells. Tissue distribution of a new
antigen must be studied extensively before conducting a clinical trial.
Moreover, due to the multiple clinical observations of antigen negative relapse,
it is clear that identifying additional backup antigens could lead to a greater
chance of saving a patient’s life. For example, CD20 and CD22 targeting CAR T
cells could be used to treat relapsed CD19 negative B cell leukemia in the in
the future [90].
Patient Preconditioning
After
infusion of CAR cells, the engineered lymphocytes compete against native blood
cells for endogenous serum cytokines and also fight against suppressive T
regulatory cells [91]. This environment can be detrimental to the efficacy of
transferred CAR cells. In addition, when treating hematological malignancies
with CAR therapy, the expression of a targeted antigen on healthy B cells can
be injurious to the proliferation and impact of infused cells against targeted
cancer tissue [92].
A more
supportive environment can be achieved through the addition of a
chemotherapeutic preconditioning regimen. Lymphodepletion and myeloablative
therapies pave the way for successful infusion of engineered cells by freeing
the environment of competitive native blood cells. Lymphocyte depletion prior
to CAR cell infusion has greatly enhanced the ability of new cells to fight
cancer. Studies using animal models have shown that CD19 CAR T cells can
effectively target and lyse leukemia cells, but this effect is dependent on
prior lymphodepletion [92-94]. These results were mirrored in recent clinical
trials, where preconditioning regimens played an integral role in treatment
success [4,78, 95-103].
While
conditioning regimens have proven successful, their effect lasts for only a few
weeks or months [104]. This constricts the therapeutic window during which CAR
cell infusion can be efficacious. Prolonging lymphodepletion could extend this
window, but doing so is highly likely to deplete infused CAR cells in addition
to host blood cells. However, the ability to engineer cells facilitates the
development of CAR T cells that are resistant to lymphodepletive therapy.
Through the inactivation of genes targeted by chemotherapy, a series of
resistant CARs has already been created which displays antitumor activity and
proliferation alongside a lymphodepletion regimen [104]. While this research
could enable successful combination immunotherapy and lead to large scale
utilization of a universal CAR, further research is necessary to ensure these
cells can also be potent in a clinical setting. Recently, several patients died
from cerebral edema attributable to fludarabine, a chemotherapy drug which has
been introduced into preconditioning regimens in several centers [105].
Toxicities
Despite
the success of recent clinical trials, CAR T cell therapy can induce severe
toxicity which can be lethal if not managed appropriately. As discussed
previously, one such toxicity occurs when the targeted tumor antigen also
surfaces on healthy tissue. This threat results in a furtive search for tumor
specific antigens during preclinical studies. Diminishing on-target, off-tumor
toxicities has also been attempted through the development of trans-signaling
CARs discussed previously [33]. Other toxicities include allergic reactions to
CAR treatment, which have induced anaphylaxis in treated patients [106].
Neurologic
toxicities are linked to the migration of CAR cells to the cerebrospinal fluid
and can appear in the form of headaches, confusion, facial nerve palsy, and
seizures, among other symptoms [107]. These dangerous side effects may
necessitate intubation or mechanical ventilation [107]. Neurotoxic events show
variable incidence rates, between 0-50%, and pose a serious threat to the future
of CAR therapy [78,107]. Recent clinical studies indicated that neurologic
toxicity could be lethal and might be associated with the application of the
chemotherapy drug fludarabine alongside a high dose of CAR T cells. However,
the mechanism of CAR therapy induced neurologic toxicities is still largely
unknown.
Tumor
lysis syndrome (TLS) is caused by rapid tumor killing that results in the
release of intracellular content such as ions and some metabolic byproducts
that cause systematic metabolic abnormalities. TLS is most common in patients
who respond well to chemotherapy and CAR T cell therapy [108]. Prophylactic
allopurinol might be given prior to conditioning chemotherapy [108,109].
Another
common toxicity associated with CAR therapy is cytokine release syndrome (CRS).
CRS often corresponds with the T cell proliferation that marks successful
treatment [78]. It develops in response to the inflammatory cytokines released
by the activation of large numbers of lymphocytes or myeloid cells [110]. Symptoms
frequently first appear in the form of high fevers and other constitutional
ailments resembling an infection [110]. As CRS advances, additional neurologic,
hepatic, hematologic, cardiovascular, pulmonary, renal, gastrointestinal, or
musculoskeletal symptoms may occur [107]. While multiple grading scales for CRS
exist, most range from grades 1-4 with life-threatening symptoms displayed at
grade 4 CRS [110,111].
Biologically,
severe CRS is associated with an elevation of twenty-four known cytokines [111].
Elevated cytokines include interferon-γ, IL-10, and IL-6. Increased levels of
IL-10 and IL-6 are also present in patients with macrophage activation
syndrome/ hemophagocytic lymphohistiocytosis (MAS/HLH), and some patients with
post-CAR treatment CRS display clinical similarities to HLH patients [112].
IL-6 is an inflammatory cytokine produced by macrophages, dendritic cells, T
cells, and various other cells in the body. This cytokine is involved in many
biological processes, including autoantibody production, B cell maturation,
bone and lipid metabolism, and more [113]. It accomplishes these functions
through both classical and trans-signaling pathways, binding to the IL-6
receptor and interacting with gp130 in order to induce intracellular signaling
[114,115]. Notably, recent studies indicated that severe CRS might contribute
to the lineage switch from ALL to AML, which might result in the escape of
tumor cells from CAR T cell surveillance and relapse [82].
Current
CRS treatments commonly target the biological pathways of IL-6. Siltuximab, an
anti-IL-6 antibody, and Tocilizumab, an IL-6 receptor blocking antibody, have
demonstrated success in treating CRS [116]. Tocilizumab has shown impressive
clinical results, leading to rapid reversal of severe CRS without affecting
long-term T cell survival [78, 112,117]. Corticosteroids have also been used to
control CRS, but they are known to inhibit T cell activation and impede the
success of CAR cells against tumor tissue [110,113,117]. Other ways to control
CRS resulting from CAR therapy include integrating switch molecules or suicide
genes into CAR constructs, which would grant clinicians the ability to down
regulate or even terminate CAR T responses [34-37,118]. Additionally, because
CRS is associated with exposure to antigen presenting cells, CRS can be
minimized by reducing the amount of antigen positive cells that come in contact
with the CAR molecules. This could be accomplished by treating patients with
lymphodepletion therapy prior to CAR infusion for B cell malignancies.
Administering CAR cells in smaller doses or simply to patients with smaller
disease burdens may also be effective in reducing CRS cases [119].
Some
research has been conducted on models that are able to predict which patients
are at risk for developing severe CRS, possibly paving the way for early
intervention strategies [111]. One predictive factor is the disease burden
prior to CAR infusion. In addition, cytokine analysis within the first three
days after infusion can also indicate a patient’s likelihood of developing
life-threating CRS. One study has resulted in sixteen regression and decision
tree models that offer high sensitivity and specificity in predicting which
patients will develop severe toxicity [111]. Whatever the method, cytotoxicity
associated with CAR therapy must be controlled before CAR treatment can truly
make a difference in cancer care.
CAR Therapy in the Clinic
Recent
advancements in immunotherapy have resulted in an increasing amount of studies
exploring the potential of CAR cancer therapy in a clinical setting. Many
completed clinical trials show the safety and efficacy of CAR therapy (Table 1), and a multitude of ongoing
trials may prove even more successful. The vast majority of clinical CARs are
aimed at treating hematological malignancies. CAR molecules are most commonly
transferred through viral transduction techniques, and many are cultured in
OKT3 (anti-CD3) and IL-2 or CD3/CD28 magnetic beads. General trends in CAR
molecule construction are also evident. 4-1BB and/or CD28 costimulatory
molecules in conjunction with a CD3z/TCRz signaling domain comprise the vast
majority of intracellular domains in clinical trials. Many studies employ
preconditioning regiments, the most common of which is cyclophosphamide at
various doses and sometimes in conjunction with other drugs. Overall, the wide
variability seen in cell dosage and phenotype in addition to differences in
preconditioning regimens makes it challenging to determine specific factors
involved in therapeutic success. While many studies show promising results,
further research must be conducted in order to ensure each patient receives
effective, life saving treatment that may very well be possible through CAR
cell therapy.
Challenges
In
addition to the prevalence of toxicities, more challenges in CAR therapeutic
efficacy still persist. Specifically, targeting solid tumors has proven
difficult. A large concern in solid tumor CAR treatment involves the search for
a suitable target antigen. Mutated antigens are uncommon, and most tumor
markers are also displayed on healthy cells. The mutated antigens that are
truly tumor specific are often displayed beneath the cell surface, rendering
CAR therapy futile, and even these antigens are not consistently expressed [120].
These difficulties can cause serious adverse effects, even death, if not
properly addressed [121]. Moreover, since antigen negative relapse has already
been observed repeatedly in clinical trial settings, the identification of
secondary tumor antigens is also a crucial need.
The
microenvironment shielding tumors is hostile for T cells. Abnormal blood flow,
metabolic anomalies, acidosis, and down-regulation of adhesive molecules
undermine the potency of CAR T cell therapy by inhibiting the cells’ trafficking,
cytolytic activity, and survival while favoring tumor growth [122]. Tumor cells
are able to produce many kinds of chemokines which can attract other cells and
form an immunosuppressive microenvironment [123]. CCL2 is one important
chemokine produced by several tumor cells such as mesothelioma, breast cancer
and pancreatic cancer. Force expressing of CCL2 receptors can enhance the CAR T
cells tumor migration and therapeutic effects [124,125]. Lymphocytes have an uphill battle in the
fight against cancer, and scientists are just beginning to understand the full
scope of challenges that must be overcome in treating malignant tumors.
A
challenging, yet promising, development is the advancement of universal CAR
cells. Universal CAR cells would allow quick and efficient treatment and would
further boost the industrialization and standardization of CAR T cell
production. This would pave the way for more patients to benefit from the
treatment. While much work must be done to reach this state, it would allow the
full potency of CAR therapy to truly change the realm of cancer treatment.
Given that CAR T cells are able to efficiently migrate to and expand in tumor environments;
some pioneer studies are investigating the use of CAR T cells as a carrier to
deliver drugs [126,127]. These
studies further expand the potential application of CAR T cell therapy and also
bring to light new challenges concerning the development of CAR structure.
CONCLUSION
Immunotherapies
have revolutionized the realm of cancer treatment and research. Specifically,
CAR cell therapy has shown potent results and promises even more success in the
near future. Variations in structure, gene transfer methods, in vitro culture techniques, target selection,
and preconditioning regimens greatly affect the efficacy of clinical CAR
treatments. Therefore, development of standard operating procedures (SOPs) for
CAR T cell therapy, including T cell harvest, engineering, expansion, shipping,
preconditioning regimen, toxicity management and so on, has become an
emergency. While many challenges still loom on the horizon, CAR T cell therapy
will likely become a routine treatment strategy for many kinds of tumors in the
future.
ACKNOWLEDGMENTS
This
project supported by grants of ACS (Y.Z.), DOD (Y.Z.), NIH (CA172106-01, Y.Z.,
HL127351-01A1,652 Y.
1. Howlader N, et al. (2016) SEER
Cancer Statistics Review, 1975-2013, National Cancer Institute. Bethesda, MD.
2. Sommermeyer D, et al. (2016)
Chimeric antigen receptor-modified T cells derived from defined CD8+ and CD4+
subsets confer superior antitumor reactivity in vivo. Leukemia 30: 492-500.
3. MacDonald KG, et al. (2016)
Alloantigen-specific regulatory T cells generated with a chimeric antigen
receptor. J Clin Invest 126: 1413-1424.
4. Turtle CJ, Hanafi LA, Berger C,
Gooley TA, Cherian S, et al. (2016) CD19 CAR-T cells of defined CD4+:CD8+
composition in adult B cell ALL patients. J Clin Invest 126: 2123-2138.
5. Gattinoni L, Speiser DE2,
Lichterfeld M3, Bonini C4,5 (2017) T memory stem cells in health and disease.
Nat Med 23: 18-27.
6. Gattinoni L, Lugli E, Ji Y, Pos Z,
Paulos CM, et al. (2011) A human memory T cell subset with stem cell-like
properties. Nat Med 17: 1290-1297.
7. Cruz CRY, et al. (2013) Infusion
of donor-derived CD19-redirected virus-specific T cells for B-cell malignancies
relapsed after allogeneic stem cell transplant: a phase 1 study. Blood 24.
8. Cruz CRY, et al. (2013) Infusion
of donor-derived CD19-redirected virus-specific T cells for B-cell malignancies
relapsed after allogeneic stem cell transplant: a phase 1 study. Blood 122:
2965-2973.
9. Terakura S, et al. (2012)
Generation of CD19-chimeric antigen receptor modified CD8+ T cells derived from
virus-specific central memory T cells. Blood 119: 72-82.
10. Sun J, et al. (2015) Early
transduction produces highly functional chimeric antigen receptor-modified
virus-specific T-cells with central memory markers: a Production Assistant for
Cell Therapy (PACT) translational application. J Immunother Cancer 3: 5.
11. Tian G, Courtney AN, Jena B,
Heczey A, Liu D, et al. (2016) CD62L+ NKT cells have prolonged persistence and
antitumor activity in vivo. J Clin Invest 126: 2341-2355.
12. Heczey A, et al. (2014) Invariant
NKT cells with chimeric antigen receptor provide a novel platform for safe and
effective cancer immunotherapy. Blood 124.
13. Exley MA, et al. (2008) Selective
activation, expansion, and monitoring of human iNKT cells with a monoclonal
antibody specific for the TCR alpha-chain CDR3 loop. Eur J Immunol 38: 1756-1766.
14. Jensen MC, Riddell SR (2015)
Designing chimeric antigen receptors to effectively and safely target tumors.
Curr Opin Immunol 33: 9-15.
15. Srivastava S, Riddell SR (2015)
Engineering CAR-T cells: Design concepts. Trends Immunol 36: 494-502.
16. Zah E, Lin MY, Silva-Benedict A,
Jensen MC, Chen YY (2016) T Cells Expressing CD19/CD20 Bispecific Chimeric
Antigen Receptors Prevent Antigen Escape by Malignant B Cells. Cancer Immunol
Res 4: 498-508.
17. Zhang X, He K, Zhao R, Wang L, Jin
Y (2016) Cloning of scFv from hybridomas using a rational strategy: Application
as a receptor to sensitive detection microcystin-LR in water. Chemosphere 160:
230-236.
18. Qian L, Li D, Ma L, He T, Qi F, et
al. (2016) The novel anti-CD19 chimeric antigen receptors with humanized scFv
(single-chain variable fragment) trigger leukemia cell killing. Cellular
Immunol 304-305: 49-54.
19. Abate-Daga D, et al. (2014) Novel
chimeric antigen receptor against prostate stem cell antigen mediates tumor
destruction in a humanized mouse model of pancreatic cancer. Human Gene Ther
25: 1003-1012.
20. Guest RD, et al. (2005) The role
of extracellular spacer regions in the optimal design of chimeric immune
receptors: evaluation of four different scFvs and antigens. J Immunother 28.
21. Hudecek M, et al. (2015) The nonsignaling
extracellular spacer domain of chimeric antigen receptors is decisive for in
vivo antitumor activity. Cancer Immunol Res 3: 125-135.
22. Savoldo B, et al. (2011) CD28
costimulation improves expansion and persistence of chimeric antigen
receptor-modified T cells in lymphoma patients. J Clin Invest 121: 1822-1826.
23. Milone MC, et al. (2009) Chimeric
receptors containing CD137 signal transduction domains mediate enhanced
survival of T cells and increased antileukemic efficacy in vivo. Molecular
therapy : the journal of the American Society of Gene Therapy17, 1453-1464
(2009).
24. Long AH, et al. (2015) 4-1BB
costimulation ameliorates T cell exhaustion induced by tonic signaling of
chimeric antigen receptors. Nat Med 21: 581-590.
25. Hombach AA, Heiders J, Foppe M,
Chmielewski M, Abken H (2012) OX40 costimulation by a chimeric antigen receptor
abrogates CD28 and IL-2 induced IL-10 secretion by redirected CD4+T cells.
Oncoimmunol 1: 458-466
26. Guedan S, Chen X, Madar A,
Carpenito C, McGettigan SE, et al. (2014) ICOS-based chimeric antigen receptors
program bipolar TH17/TH1 cells. Blood 124: 1070-1080.
27. Sampson JH, et al. (2014) EGFRvIII
mCAR-modified T-cell therapy cures mice with established intracerebral glioma
and generates host immunity against tumor-antigen loss. Clin Cancer Res 20:
972-984.
28. Zou W (2005) Immunosuppressive
networks in the tumour environment and their therapeutic relevance. Nature
reviews. Cancer 5: 263-274.
29. Grada Z, et al. (2013) TanCAR: a
novel bispecific chimeric antigen receptor for cancer immunotherapy. Molecular
therapy. Nucleic acids 2: e105.
30. Hegde M, Mukherjee M, Grada Z,
Pignata A, Landi D, et al. (2016) Tandem CAR T cells targeting HER2 and
IL13Rα2 mitigate tumor antigen escape. J Clin Invest 126: 3036-3052.
31. Klebanoff CA, Rosenberg SA,
Restifo NP (2016) Prospects for gene-engineered T cell immunotherapy for solid
cancers. Nat Med 22: 26-36.
32. Roybal KT, et al. (2016) Precision
Tumor Recognition by T Cells With Combinatorial Antigen-Sensing Circuits. Cell
164: 770-779.
33. Lanitis E, et al. (2013) Chimeric
antigen receptor T Cells with dissociated signaling domains exhibit focused
antitumor activity with reduced potential for toxicity in vivo. Cancer Immunol
Res 1: 43-53.
34. Cao Y, Rodgers DT, Du J, Ahmad I,
Hampton EN, et al. (2016) Design of Switchable Chimeric Antigen Receptor T
Cells Targeting Breast Cancer. Angew Chem Int Ed Engl 55: 7520-7524.
35. Ma JS, Kim JY, Kazane SA, Choi SH,
Yun HY, et al. (2016) Versatile strategy for controlling the specificity and
activity of engineered T cells. Proc Natl Acad Sci USA 113: E450-458.
36. Marin V, et al. (2012) Comparison
of different suicide-gene strategies for the safety improvement of genetically
manipulated T cells. Hum Gene Ther Methods 23: 376-386.
37. Wu CY, Roybal KT, Puchner EM,
Onuffer J, Lim WA (2015) Remote control of therapeutic T cells through a small
molecule-gated chimeric receptor. Science 350: aab4077.
38. Liu L, Sommermeyer D, Cabanov A,
Kosasih P, Hill T, et al. (2016) Inclusion of Strep-tag II in design of antigen
receptors for T-cell immunotherapy. Nat Biotechnol 34: 430-434.
39. Liu X, Barrett DM, Jiang S, Fang
C, Kalos M, et al. (2016) Improved anti-leukemia activities of adoptively
transferred T cells expressing bispecific T-cell engager in mice. Blood Cancer
J 6: e430.
40. Chmielewski M, Hombach AA, Abken H
(2014) Of CARs and TRUCKs: chimeric antigen receptor (CAR) T cells engineered
with an inducible cytokine to modulate the tumor stroma. Immunol Rev 257.
41. Qin DY, Huang Y, Li D, Wang YS,
Wang W, et al. (2016) Paralleled comparison of vectors for the generation of
CAR-T cells. Anticancer Drugs 27: 711-722.
42. Zhao Y, et al. (2006)
High-efficiency transfection of primary human and mouse T lymphocytes using RNA
electroporation. Molecular Ther 13.
43. Krug C, et al. (2015) Stability
and activity of MCSP-specific chimeric antigen receptors (CARs) depend on the
scFv antigen-binding domain and the protein backbone. Cancer Immunol Immunother
64: 1623-1635.
44. Magnani CF, et al. (2016)
Immunotherapy of acute leukemia by chimeric antigen receptor- modi ed lymphocytes
using an improved Sleeping Beauty transposon platform. Oncotarget.
45. Najjar AM, et al. (2016) Imaging
of Sleeping Beauty-Modified CD19-Specific T Cells Expressing HSV1-Thymidine
Kinase by Positron Emission Tomography. Molecular imaging and biology : MIB :
the official publication of the Academy of Molecular Imaging.
46. Kebriaei P, Singh H, Huls MH,
Figliola MJ, Bassett R, et al. (2016) Phase I trials using Sleeping Beauty to
generate CD19-specific CAR T cells. J Clin Invest 126: 3363-3376.
47. Gill S, Maus MV, Porter DL (2016)
Chimeric antigen receptor T cell therapy: 25years in the making. Blood Rev 30:
157-167.
48. Kusabuka H, et al. (2016) Highly
efficient gene transfer using a retroviral vector into murine T cells for
preclinical chimeric antigen receptor-expressing T cell therapy. Biochem
Biophys Res Commun 473: 73-79.
49. Tumaini B, Lee DW, Lin T,
Castiello L, Stroncek DF, et al. (2013) Simplified process for the production
of anti-CD19-CAR-engineered T cells. Cytotherapy 15: 1406-1415.
50. Jones S, et al. (2009) Lentiviral
vector design for optimal T cell receptor gene expression in the transduction
of peripheral blood lymphocytes and tumor-infiltrating lymphocytes. Human Gene
Ther 20.
51. Li Y, Kurlander RJ (2010)
Comparison of anti-CD3 and anti-CD28-coated beads with soluble anti-CD3 for
expanding human T cells: differing impact on CD8 T cell phenotype and
responsiveness to restimulation. J Transl Med 8: 104.
52. Gargett T, Brown MP (2015)
Different cytokine and stimulation conditions influence the expansion and immune
phenotype of third-generation chimeric antigen receptor T cells specific for
tumor antigen GD2. Cytotherapy 17: 487-495.
53. Denman CJ, Senyukov VV, Somanchi
SS, Phatarpekar PV, Kopp LM, et al. (2012) Membrane-bound IL-21 promotes
sustained ex vivo proliferation of human natural killer cells. PLoS One 7:
e30264.
54. Konnikova L, Simeone MC, Kruger
MM, Kotecki M, Cochran BH (2005) Signal transducer and activator of
transcription 3 (STAT3) regulates human telomerase reverse transcriptase
(hTERT) expression in human cancer and primary cells. Cancer Res 65: 6516-6520.
55. Alvarez-Fernandez C,
Escriba-Garcia L, Vidal S, Sierra J, Briones J (2016) A short CD3/CD28
costimulation combined with IL-21 enhance the generation of human memory stem T
cells for adoptive immunotherapy. J Transl Med 14: 214.
56. Teschner D, et al. (2011) In vitro
stimulation and expansion of human tumour-reactive CD8+ cytotoxic T lymphocytes
by anti-CD3/CD28/CD137 magnetic beads. Scand J
Immunol 74: 155-164.
57. Suhoski MM, et al. (2007)
Engineering artificial antigen-presenting cells to express a diverse array of
co-stimulatory molecules. Mol Ther 15:
981-988 (2007).
58. Singh N, Perazzelli J, Grupp SA,
Barrett DM (2016) Early memory phenotypes drive T cell proliferation in
patients with pediatric malignancies. Sci Transl Med 8: 320ra3.
59. Louis CU, Savoldo B, Dotti G, Pule
M, Yvon E, et al. (2011) Antitumor activity and long-term fate of chimeric
antigen receptor-positive T cells in patients with neuroblastoma. Blood 118:
6050-6056.
60. Lugli E, Dominguez MH, Gattinoni
L, Chattopadhyay PK, Bolton DL, et al. (2013) Superior T memory stem cell
persistence supports long-lived T cell memory. J Clin Invest 123: 594-599.
61. Singh N, Perazzelli J, Grupp SA,
Barrett DM (2016) Early memory phenotypes drive T cell proliferation in
patients with pediatric malignancies. Sci Transl Med 8.
62. Xu Y, Zhang M, Ramos CA, Durett A,
Liu E, et al. (2014) Closely related T-memory stem cells correlate with in vivo
expansion of CAR.CD19-T cells and are preserved by IL-7 and IL-15. Blood 123:
3750-3759.
63. Klebanoff CA, et al. (2016) Memory
T cell-driven differentiation of naive cells impairs adoptive immunotherapy. J
Clin Invest 126: 318-334.
64. Brentjens RJ, et al. (2013) CD19-targeted
T cells rapidly induce molecular remissions in adults with
chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 5:
177ra138.
65. Kawalekar OU, et al. (2016)
Distinct Signaling of Coreceptors Regulates Specific Metabolism Pathways and Impacts
Memory Development in CAR T Cells. Immunity 44: 380-390.
66. Porter DL, et al. (2015) Chimeric
antigen receptor T cells persist and induce sustained remissions in relapsed
refractory chronic lymphocytic leukemia. Sci Transl Med 7: 303ra139.
67. Santos EB, et al. (2009) Sensitive
in vivo imaging of T cells using a membrane-bound Gaussia princeps luciferase.
Nature Med 15: 338-344.
68. Adusumilli PS, et al. (2014)
Regional delivery of mesothelin-targeted CAR T cell therapy generates potent
and long-lasting CD4-dependent tumor immunity. Sci Transl Med 6, 261ra151.
69. Carpenito C, et al. (2009) Control
of large, established tumor xenografts with genetically retargeted human T
cells containing CD28 and CD137 domains. Proceedings of the National Academy of
Sciences of the United States of America 106: 3360-3365.
70. Katz SC, Point GR, Cunetta M,
Thorn M, et al. (2016) Regional CAR-T cell infusions for peritoneal
carcinomatosis are superior to systemic delivery. Cancer Gene Ther 23: 142-148.
71. Crespo J, Sun H, Welling TH, Tian
Z, Zou W (2013) T cell anergy, exhaustion, senescence, and stemness in the
tumor microenvironment. Curr Opin Immunol 25: 214-221.
72. Ninomiya S, Narala N, Huye L,
Yagyu S, Savoldo B, et al. (2015) Tumor indoleamine 2,3-dioxygenase (IDO)
inhibits CD19-CAR T cells and is downregulated by lymphodepleting drugs. Blood
125: 3905-3916.
73. Wherry EJ (2011) T cell
exhaustion. Nat Immunol 12: 492-499.
74. Ghosh A, Smith M, James SE, Davila
ML, et al. (2017) Donor CD19 CAR T cells exert potent graft-versus-lymphoma
activity with diminished graft-versus-host activity. Nat Med 23: 242-249.
75. Liu X, et al. (2015)
Affinity-Tuned ErbB2 or EGFR Chimeric Antigen Receptor T Cells Exhibit an
Increased Therapeutic Index against Tumors in Mice. Cancer Res 75: 3596-3607.
76. Caruso HG, et al. (2015) Tuning
Sensitivity of CAR to EGFR Density Limits Recognition of Normal Tissue While
Maintaining Potent Antitumor Activity. Cancer Res 75: 3505-3518.
77. Watanabe K, et al. (2015) Target
antigen density governs the efficacy of anti-CD20-CD28-CD3 zeta chimeric
antigen receptor-modified effector CD8+ T cells. J Immunol 194: 911-920.
78. Porter DL, et al. (2015) Chimeric
antigen receptor T cells persist and induce sustained remissions in relapsed
refractory chronic lymphocytic leukemia. Sci Transl Med 7.
79. Maude SL, Frey N, Shaw PA, Aplenc
R, Barrett DM, et al. (2014) Chimeric antigen receptor T cells for sustained
remissions in leukemia. N Engl J Med 371: 1507-1517.
80. Posey AD, et al. (2016) Engineered
CAR T Cells Targeting the Cancer-Associated Tn-Glycoform of the Membrane Mucin
MUC1 Control Adenocarcinoma. Immunity 44: 1444-1454.
81. Jacoby E, et al. (2016) CD19 CAR
immune pressure induces B-precursor acute lymphoblastic leukaemia lineage
switch exposing inherent leukaemic plasticity. Nat Commun 7: 12320.
82. Gardner R, et al. (2016)
Acquisition of a CD19-negative myeloid phenotype allows immune escape of
MLL-rearranged B-ALL from CD19 CAR-T-cell therapy. Blood127, 2406-2410 (2016).
83. Schumacher TN, Schreiber RD (2015)
Neoantigens in cancer immunotherapy. Science 348: 69-74.
84. Zhang G, Wang L, Cui H, Wang X,
Zhang G, et al. (2014) Anti-melanoma activity of T cells redirected with a
TCR-like chimeric antigen receptor. Sci Rep 4: 3571.
85. Ma Q, et al. (2016) A novel
TCR-like CAR with specificity for PR1/HLA-A2 effectively targets myeloid
leukemia in vitro when expressed in human adult peripheral blood and cord blood
T cells. Cytotherapy 18: 985-994.
86. Dahan R, Reiter Y (2012)
T-cell-receptor-like antibodies - generation, function and applications. Expert
Rev Mol Med 14: e6.
87. Oren R, et al. (2014) AFunctional
comparison of engineered T cells carrying a native TCR versus TCR-like
antibody-based chimeric antigen receptors indicates affinity/avidity
thresholds. J Immunol 193, 5733-5743.
88. Carpenter RO, et al. (2013) B-cell
maturation antigen is a promising target for adoptive T-cell therapy of
multiple myeloma. Clin Cancer Res 19: 2048-2060.
89. Ma Q, Gomes EM, Lo AS, Junghans RP
(2014) Advanced generation anti-prostate specific membrane antigen designer T
cells for prostate cancer immunotherapy. Prostate 74: 286-296.
90. Zhang WY, et al. (2016) Treatment
of CD20-directed Chimeric Antigen Receptor-modified T cells in patients with
relapsed or refractory B-cell non-Hodgkin lymphoma: an early phase IIa trial
report. Signal Transduction And Targeted Therapy 1: 16002.
91. Dudley ME, et al. (2008) Adoptive
cell therapy for patients with metastatic melanoma: evaluation of intensive
myeloablative chemoradiation preparative regimens. J Clin Oncol 26: 5233-5239.
92. James SE, et al. (2009)
Antibody-mediated B-cell depletion before adoptive immunotherapy with T cells
expressing CD20-specific chimeric T-cell receptors facilitates eradication of
leukemia in immunocompetent mice. Blood 114.
93. Jacoby E, et al. (2016) Murine
allogeneic CD19 CAR T cells harbor potent antileukemic activity but have the
potential to mediate lethal GVHD. Blood 127.
94. Kochenderfer JN, Yu Z, Frasheri D,
Restifo NP, Rosenberg SA (2010) Adoptive transfer of syngeneic T cells
transduced with a chimeric antigen receptor that recognizes murine CD19 can
eradicate lymphoma and normal B cells. Blood 116: 3875-3886.
95. Ali SA, et al. (2016) T cells
expressing an anti-B-cell-maturation-antigen chimeric antigen receptor cause
remissions of multiple myeloma. Blood.
96. Dai H, Zhang W, Li X, Han Q, Guo
Y, et al. (2015) Tolerance and efficacy of autologous or donor-derived T cells
expressing CD19 chimeric antigen receptors in adult B-ALL with extramedullary
leukemia. Oncoimmunology 4: e1027469.
97. Gardner R, Wu D, Cherian S, Fang
M, Hanafi LA, et al. (2016) Acquisition of a CD19-negative myeloid phenotype
allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy.
Blood 127: 2406-2410.
98. Gargett T, et al. (2016)
GD2-specific CAR T cells undergo potent activation and deletion following
antigen encounter but can be protected from activation-induced cell death by
PD-1 blockade. Mol Ther 24: 1135-1149.
99. Katz SC, et al. (2015) Phase I
Hepatic Immunotherapy for Metastases Study of Intra-Arterial Chimeric Antigen
Receptor-Modified T-cell Therapy for CEA+ Liver Metastases. Clin Cancer Res 21:
3149-3159.
100.Kochenderfer JN, et al. (2015)
Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell
malignancies can be effectively treated with autologous T cells expressing an
anti-CD19 chimeric antigen receptor. J Clin Oncol 33: 540-549.
101.Lee DW, et al. (2015) T cells
expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in
children and young adults: a phase 1 dose-escalation trial. The Lancet 385:
517-528.
102.Ramos CA, et al. (2016) Clinical
responses with T lymphocytes targeting malignancy-associated kappa light
chains. J Clin Invest 126: 2588-2596.
103.Wang X, Popplewell LL, Wagner JR,
Naranjo A, Blanchard MS, et al. (2016) Phase 1 studies of central
memory-derived CD19 CAR T-cell therapy following autologous HSCT in patients
with B-cell NHL. Blood 127: 2980-2990.
104.Valton J, et al. (2015) A
Multidrug-resistant Engineered CAR T Cell for Allogeneic Combination
Immunotherapy. Mol Ther 23: 1507-1518.
105.Turtle CJ, et al. (2016)
Immunotherapy of non-Hodgkin's lymphoma with a defined ratio of CD8+ and CD4+
CD19-specific chimeric antigen receptor-modified T cells. Sci Transl Med 8: 355ra116.
106.Maus MV, et al. (2013) T cells
expressing chimeric antigen receptors can cause anaphylaxis in humans. Cancer
Immunol Res 1: 26-31.
107.Brudno JN, Kochenderfer JN (2016)
Toxicities of chimeric antigen receptor T cells: recognition and management.
Blood 127: 3321-3330.
108.Grupp SA, Kalos M, Barrett D,
Aplenc R, Porter DL, et al. (2013) Chimeric antigen receptor-modified T cells
for acute lymphoid leukemia. N Engl J Med 368: 1509-1518.
109.Namuduri M, Brentjens RJ (2016)
Medical management of side effects related to CAR T cell therapy in hematologic
malignancies. Expert Rev Hematol 9: 511-513.
110.Lee DW, Gardner R, Porter DL,
Louis CU, Ahmed N, et al. (2014) Current concepts in the diagnosis and
management of cytokine release syndrome. Blood 124: 188-195.
111.Teachey DT, et al. (2016)
Identification of Predictive Biomarkers for Cytokine Release Syndrome after
Chimeric Antigen Receptor T-cell Therapy for Acute Lymphoblastic Leukemia.
Cancer Discov 6: 664-679.
112.Barrett DM, Teachey DT, Grupp SA
(2014) Toxicity management for patients receiving novel T-cell engaging
therapies. Curr Opin Pediatr 26: 43-49.
113.Maude SL, Barrett D, Teachey DT,
Grupp SA (2014) Managing cytokine release syndrome associated with novel T
cell-engaging therapies. Cancer J 20: 119-122.
114.Calabrese LH1, Rose-John S2 (2014)
IL-6 biology: implications for clinical targeting in rheumatic disease. Nat Rev
Rheumatol 10: 720-727.
115.Wolf J1, Rose-John S2, Garbers C3
(2014) Interleukin-6 and its receptors: a highly regulated and dynamic system.
Cytokine 70: 11-20.
116.Chen F, et al. (2016) Measuring
IL-6 and sIL-6R in serum from patients treated with tocilizumab and/or
siltuximab following CAR T cell therapy. Journal of immunological methods 434:
1-8.
117.Davila ML, et al. (2014) Efficacy
and toxicity management of 19-28z CAR T cell therapy in B cell acute
lymphoblastic leukemia. Science translational medicine 6: 224ra225.
118.Rodgers DT, Mazagova M, Hampton
EN, Cao Y, Ramadoss NS, et al. (2016) Switch-mediated activation and
retargeting of CAR-T cells for B-cell malignancies. Proc Natl Acad Sci USA 113:
E459-468.
119.Kochenderfer JN, et al. (2011)
B-cell depletion and remissions of malignancy along with cytokine-associated
toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor–transduced
T cells. Blood 119.
120.Zhang BL, et al. (2016) Hurdles of
CAR-T cell-based cancer immunotherapy directed against solid tumors. Science
China. Life Sci 59: 340-348.
121.Morgan RA, et al. (2010) Case
report of a serious adverse event following the administration of T cells
transduced with a chimeric antigen receptor recognizing ERBB2. Molecular
therapy : the journal of the American Society of Gene Therapy18: 843-851.
122.Bellone M, Calcinotto A (2013)
Ways to enhance lymphocyte trafficking into tumors and fitness of tumor
infiltrating lymphocytes. Frontiers
Oncol 3: 231.
123.Balkwill F (2004) Cancer and the
chemokine network. Nat Rev Cancer 4: 540-550.
124.Moon EK, et al. (2011) Expression
of a functional CCR2 receptor enhances tumor localization and tumor eradication
by retargeted human T cells expressing a mesothelin-specific chimeric antibody
receptor. Clin Cancer Res 17: 4719-4730.
125.Craddock JA, et al. (2010)
Enhanced tumor trafficking of GD2 chimeric antigen receptor T cells by expression
of the chemokine receptor CCR2b. J Immunother 33: 780-788.
126.Boice M, Salloum D, Mourcin F,
Sanghvi V, Amin R, et al. (2016) Loss of the HVEM Tumor Suppressor in Lymphoma
and Restoration by Modified CAR-T Cells. Cell 167: 405-418.
127.Roybal KT, et al. (2016)
Engineering T Cells with Customized Therapeutic Response Programs Using
Synthetic Notch Receptors. Cell 167: 419-432 e416.
128.Wang X, Popplewell LL, Wagner JR,
Naranjo A, Blanchard MS, et al. (2016) Phase 1 studies of central
memory-derived CD19 CAR T-cell therapy following autologous HSCT in patients
with B-cell NHL. Blood 127: 2980-2990.
129.Lee DW, et al. (2015) T cells
expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in
children and young adults: a phase 1 dose-escalation trial. Lancet 385:
517-528.
130.Brudno JN, Somerville RPT, Shi V,
Rose JJ, Halverson DC, et al. (2016) Allogeneic T cells that express an
anti-CD19 chimeric antigen receptor induce remissions of B-cell malignancies
that progress after allogeneic hematopoietic stem-cell transplantation without
causing graft-versus-host disease. J Clin Oncol 34: 1112-1121.
QUICK LINKS
- SUBMIT MANUSCRIPT
- RECOMMEND THE JOURNAL
-
SUBSCRIBE FOR ALERTS
RELATED JOURNALS
- Journal of Spine Diseases
- Dermatology Clinics and Research (ISSN:2380-5609)
- Journal of Cardiology and Diagnostics Research (ISSN:2639-4634)
- Journal of Cell Signaling & Damage-Associated Molecular Patterns
- International Journal of AIDS (ISSN: 2644-3023)
- Stem Cell Research and Therapeutics (ISSN:2474-4646)
- International Journal of Anaesthesia and Research (ISSN:2641-399X)