751
Views & Citations
Understanding the details of
microstructure and characterisation/differentiation of properties of wheat
straw anatomical parts is essential for their smart bio-refinery. Comprehensive
and systematic experimental programmes shouldbe designed in order to thoroughly
investigate the node and internode of wheat straw with quantitative appraisals
and qualitative interpretations. This could contribute towards straw biomass
valorisation in bio-refinery pathways. Utilisation of these inexpensive raw
materials leads to socio-economic and environmental benefits by making
additional income to the farmers, generating cost-effective high performing
bio-products and minimising the burning of the straw in the fields. The
bridging between the research-based adaptation of efficient pre-treatments on
the extraction, separation and fractionation of waste crops components, has
unique potential to yield innovative added value green chemicals. The direct extraction of specifically engineered or naturally occurring
chemicals from the complex molecular components of different parts of straw
biomass is also a possibility which requires the detailed investigations of
anatomical parts.
INTRODUCTION
Continuing
overpopulation and consumptionsincrease are driving global food demand, with
agricultural activity growing to keep pace. Europe has huge agricultural waste
problems, annually generating around 700 million tonnes of waste. There is a
critical need and major opportunities to addressing the efficient utilisation
of agricultural wastes, co-products and by-products towards delivering
sustainable value chains in the farming and processing sectors. Low value
agricultural waste could be transformed into highly valuable products through
holistic elucidation of straw biomass, their detailed anatomical
characterisation and by developing a detailed understanding of the waste
streams and pilotingimportant number of waste utilisation/valorisation
pathways.
Wheat is a major food crop
in various countries around the globewith aproduction of 744 million tons in
2016/17. It is the mainproportion of mostdiets in the EU, US and China.Wheat is
one of the ubiquitous grain cropsdue to its agronomicadaptability, ease of
storage, nutritional value and the ability of its flour to produce
differentproducts [1].
Throughout the recent years
our research has contributed to the comprehensive understanding of wheat straw
(TriticumaestivumL.), summarised in the following points:
1)
Critical reviews which
identify the gaps and future prospective in research fields of i) lignin in
straw and its optimisation as an adhesive, i.e. thermosetting resins [2], ii)
structural analysis techniques for lignin characterisation with differentiation
of quantitative and qualitative analyses [3], and iii) bioengineering concept
for straw biomass bio-conversion to bio-energy/bio-composite with specific
functions of microorganisms, i.e. fungi and enzymes [4].
2)
Revealing the morphology of
node and internode in wheat straw with a 3D model of node and its core,
investigated from the root to the grain head direction in stem [5].
3)
In-depth scientific
identification of differential physicochemical properties of node and internode
with relative surface profile functionalization [6-8].
4)
Environmentally friendly
pre-treatment strategy with effective surface modification of wheat straw for
the optimisation of interfacial bonding [9].
Interfacial bonding and
physical model of failure mechanisms in straw composite [9].
Bio-based materials can be used for a wide range of
products (e.g. food, construction, furniture, paper, textile,chemicals, etc...)
and energy use (e.g. biofuels). The bio-economy hence provides alternatives to
fossil-based products and energy, and can contribute to the circular economy.
Bio-based materials can also present advantages such as renewability,
biodegradability or compost-ability.
In this paper some of the outcomes of the research are
presented with directions for further research and investments for valorisation
of wheat straw.
Wheat
Straw Main Constituents
Lignocellulosic material from cereal straws
essentially consists of three different polymeric entities: linear and
crystalline (cellulose), branched non-cellulosic and non-crystalline hetero-polysaccharides
(hemicelluloses), and branched (non-crystalline) lignin [12]. Lignin is
primarily a structural material to add strength and rigidity to cell walls and
constitutes between 15 and 40 weight% of the dry matter of plants, whether
wood, straw or other natural woody plants [13,14]. Lignin acts as a matrix
together with hemicelluloses for the cellulose microfibrials which are formed
by ordered polymer chains that contain tightly packed, crystalline regions,
represented in Figure 1.
Cellulose is a long chain of glucose molecules,
connected to each other primarily by β (14) glycosidic bonds
and its non-complicated structure shows that it can be biodegraded.
Hemicellulose, just like cellulose, is a macromolecule from different sugars
but alters from cellulose in that it is not chemically homogeneous and is a
polysaccharide, which has lower molecular weight compared to cellulose. A key alteration
among cellulose and hemicellulose is that the latter possesses branches with
short lateral chains containing various sugars, and cellulose contains easily
hydrolysable oligomers. Hemicelluloses in straw biomass are made mainly of
xylan, whereas softwood hemicelluloses have glucomannan [12].
Wheat Straw
Morphological Variations
Wheat straw is composed on a mass basis of
internodes (57 ± 10%), nodes (10 ± 2%), leaves (18 ± 3%), chaffs (9 ± 4%) and
rachis (6 ± 2%) [10].Wheat straw stem comprises internodes separated by nodes,
at which leaves are attached to the stem (Figure
2). The internodes are formed as concentric rings leaving a void or lumen
in the centre. The outermost ring is a cellulose-rich dense layer (termed the
epidermis), which has a concentration of silica on the surface. Beneath the
epidermis is a loose layer containing parenchyma and vascular bundles. The
length of the internodes increases from the ground to the top [5].
The material preparation and
separation were important steps prior to testing characterisation and/or
pre-treatments. As shown in Figure 3, the leaves were separated from the
stem, and then the stems were grouped and cleaned. The internodes were grouped
and nodes were carefully cut and separated. The stem had to be examined
carefully for nodes separation, in order to separate the node.
The examination of the
nodes compact architecture in wheat straw revealed a very different morphology
from that of the internode. The node structure along the longitudinal direction
was investigated by taking cross-section images after carefully grinding layer
by layer with smooth abrasive paper moving towards the wheat grain, shown in Figure 4. This would then enable the 3D
model of the node morphology.Figure 3
shows the outer and inner surfaces of node region, and their corresponding OM
images are shown by the arrows indicating their positions in the node region.
The investigation starts from the internode immediately before the node and
then enters the node core zone and continues forward to where the brown
elliptical rings get smaller and the beginning of the upper internode reveals.
Those brown elliptical rings start to get smaller and smaller until they
disappear, i.e. the start of the hollow upper internode. Unlike node the
morphological longitudinal profile of internode was found to be consistent. The
outer part of the straw internode contains wax and inorganic substances on the
surface, and then follows a region with fibre bundles (vascular bundles)
integrated in a region of parenchyma and vessel elements. The epidermis is a
complex tissue with bubble-shaped polygonal short and long cell types, see Figure 5. Wheat straw epidermis is
thin, but has dense and thick-walled cells with an outer wall coated with a
waxy film of cutincuticle[5].
Physicochemical Properties and Surface Functionalities
of Wheat Straw Node and Internode
The physicochemical
and surface functionality characterisations contribute towards the valorisation
of wheat straw as improved feedstocks for bio-refinery processes. In order to gain more aggregated understanding
of node and internode, the physicochemical characteristics were examined in
relation to their cell wall components. Distinct variations were found amongst
the physicochemical characteristics and cell wall components of node and
internode, making them suitable and/or defect for different specific
bio-refinery pathways. Separation of node and internode, possessing different
attributes, and utilising them in segregated processing’s could lead to higher
value added products. For instance node had higher extractives and ash content
which could be a defect for bio-composites or bio-energy as these
characteristics inhibit the performance of the intended end product.
It must be recognised that
not all parts of the straw biomass are equally valuable. For instance biofuel
and chemical processors only require the high yielding cellulose and
hemicellulose biomass parts delivered. This signifies a strategy for
identifying and subsequently reducing the number of undesirable residue parts
for feedstock. Additionally the heterogeneous nature of straw, where their
chemical composition varies with species, location, storage time, harvest,
stage of maturity, environmental conditions and anatomical parts, i.e. node and
internode, makes their comprehensive characterisation essential prior to
bioconversion process [16,17]. It is
almost impossible to control the compositional variability of straw biomass,
but it is feasible to monitor the variability and accordingly select the processing
technologies for the specific bio-refinery.
Surface Elemental Composition of Node and Internode
Elemental
composition of wheat straw profiles is shown in Table 1. The bulk structure of the wheat straw consisted of
carbohydrates and lignin with a considerable amount of carbon (C) and oxygen
(O), and a trace amount of silicon (Si) weight percentage. The outer surface of
internode has higher Si weight percentage than the inner surface, the former is
5.8% and the latter is 0.8%. By comparing the nodes and internodes, outer to
inner surface, it could be concluded that more silicon (in the form of silica)
is located mainly on the outer surface (epidermis) of wheat straw.
Cell Wall Composition of Node and Internode
The assessment of cell wall composition in straw biomass is
traditionally carried out on milled samples of the whole stem, without accurate
determination of node and internode separately. However, the cell wall
composition of the internode may be rather different from that of the node.
Table 2 summarises the main
chemical components of wheat straw analysed following the NREL/TP-510-42620.
The variation of cell wall composition across wheat straw node and internode
showed that node yielded slightly higher Klason lignin, extractives and ash
content than internode, which could be related to their morphology, precisely
the higher ash and extractives content in the node are explained by thicker
epidermis tissue.
The extractives are a
heterogeneous group of substances in straw biomass. The main extractives are
resin acids, sterol esters, waxes, triglycerides, fatty acids, sterols, fatty
alcohols and a selection of phenolic compounds [18]. It is evident that the extractives
in nodes are higher than in internodes (Table
2), for both (hot-water) HW extraction and ethanol (ET) extraction. This
observation can be helpful for the selection and process of straw for intended
end application i.e. bio-composites as the higher extractives content of the
nodes could lead to the inhibition of optimal interfacial bonding between the
straw particles.It is also observed that the node of wheat straw contains more
ash, in both non-extracted samples (structural ash) and extracted samples
through hot-water and ethanol. The higher ash content of the node can cause
problems for the pulping and therefore its removal prior to pulping will
upgrade straw quality as a feedstock.
CONCLUSIONS
These are important
parameters for optimising the yield and economics of various bioconversion
pathways. Unfortunately, despite wheat straw’s potential for bio-refinery to
value added products; it still remains underutilised due to the lack of
understanding the complexity of its constituents. The detailed information from
this study shall serve as valuable and fundamental basis/database for
researchers and industries in the sector of bio-refinery of straw biomass.
An open central knowledge database with available straw biomass characterisation and specifications should be established. This can be a huge task which researchers are trying to contribute towardsbut it requires a greater international effort and collaborations. A mutual interest agreement amongst researchers and companies involved in bio-based materials should be introduced. Competition is good for innovation, but in the start-up phase, small companies should collaborate for R&D rather than compete with each other.
1.
USDA (2016) Economic
Research Service. Untied States Department of Agriculture.
2.
Ghaffar SH, Fan M (2014)
Lignin in straw and its applications as an adhesive. Int J AdhesAdhes 48:
92-101.
3.
Ghaffar SH, Fan M (2013)
Structural analysis for lignin characteristics in biomass straw. Biomass and
Bioenergy 57: 264-79.
4.
Ghaffar SH, Fan M, McVicar
B (2015) Bioengineering for utilisation and bioconversion of straw biomass into
bio-products. Ind Crops Prod 77: 262-274.
5.
Ghaffar SH, Fan M (2015)
Revealing the morphology and chemical distribution of nodes in wheat straw.
Biomass and Bioenergy 77: 123-134.
6.
Ghaffar SH, Fan M (2017) An
aggregated understanding of physicochemical properties and surface
functionalities of wheat straw node and internode. Ind Crops Prod 95.
7.
Ghaffar SH, Fan M, Zhou Y,
Abo Madyan O (2017) Detailed Analysis of Wheat Straw Node and Internode for
Their Prospective Efficient Utilization. J Agric Food Chem 65.
8.
Ghaffar SH, Fan M (2015)
Differential behaviour of nodes and internodes of wheat straw with various
pre-treatments. Biomass and Bioenergy 83: 373-382.
9.
Ghaffar SH, Fan M, McVicar
B (2017) Interfacial properties with bonding and failure mechanisms of wheat
straw node and internode. Compos Part AApplSciManuf 99: 102-112.
10.
Motte JC, Escudie R,
Beaufils N, Steyer JP, Bernet N, et al. (2014) Morphological structures of
wheat straw strongly impacts its anaerobic digestion. Ind Crops Prod 52:
695-701.
11.
López-Abelairas M,
ÁlvarezPallín M, Salvachúa D, Lú-Chau T, Martínez MJ, et al. (2013)
Optimisation of the biological pretreatment of wheat straw with white-rot fungi
for ethanol production. Bioprocess BiosystEng 36: 1251-60.
12.
Ghaffar SH (2016) Straw
fibre-based construction materials.
13.
Akin DE, RB (1988)
Degradation of polysaccharides and lignin by ruminal bacteria and fungi. Appl
Environ Microbiol 54: 1117-1125.
14.
Baurhoo B, Ruiz-Feria CA,
Zhao X (2008) Purified lignin: Nutritional and health impacts on farm animals—A
review. Anim Feed SciTechnol 144: 175-184.
15.
Doherty WOS, Mousavioun P,
Fellows CM (2011) Value-adding to cellulosic ethanol: Lignin polymers. Ind
Crops Prod 33: 259-276.
16.
Harper SHT, Lynch JM (1981)
The chemical components and decomposition of wheat straw leaves, internodes and
nodes. J Sci Food Agric 32: 1057-1062.
17.
Hess JR, Thompson DN,
Hoskinson RL, Shaw PG, Grant DR (2003) Physical separation of straw stem
components to reduce silica. ApplBiochemBiotechnol 108: 43-51.
18.
Sun RC, Tompkinson J (2003)
Comparative study of organic solvent and water-soluble lipophilic extractives
from wheat straw I: yield and chemical composition. J Wood Sci 49: 47-52.
QUICK LINKS
- SUBMIT MANUSCRIPT
- RECOMMEND THE JOURNAL
-
SUBSCRIBE FOR ALERTS
RELATED JOURNALS
- Journal of Microbiology and Microbial Infections (ISSN: 2689-7660)
- Journal of Agriculture and Forest Meteorology Research (ISSN:2642-0449)
- Journal of Astronomy and Space Research
- Journal of Genomic Medicine and Pharmacogenomics (ISSN:2474-4670)
- Journal of Womens Health and Safety Research (ISSN:2577-1388)
- Journal of Genetics and Cell Biology (ISSN:2639-3360)
- Advances in Nanomedicine and Nanotechnology Research (ISSN: 2688-5476)