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ABSTRACT 
Efflux pumps are omnipresent in almost all types of cells. They participate in the transportation of a wide range of important 
molecules across the cell membrane. They play primordial roles in detoxification of the cell by disposing off unwanted 
materials. Since tumor cells emerge from normal cells as a result of mutation, they carry with them the genes coding for the 
efflux pumps. These efflux pumps are overexpressed by cancer cells. They defend the cancer cells against chemotherapy by 
actively pumping out the drug molecules that have incurred into the cytoplasm. This leads to drug resistance, which is the 
major cause for low efficiency of most of the chemotherapeutic drugs. Although many efflux pump inhibitors have been 
developed, none of them has been clinically approved because of their lack in specificity, which causes them to incur into the 
normal cells leading to many adverse effects. Moreover, with time, the cancer cells develop resistance against these 
inhibitors. RNAi mediated gene silencing proved to be effective in silencing the MDR genes under in vitro conditions. 
However, they prove to be inefficient under in vivo trials due to the lack of a proper transport vector that will be able to 
transport the pre-interfering RNAs specifically to the tumor site while keeping the normal cells intact. Many oncolytic viruses 
have been identified and genetically engineered to specifically infect a wide range of tumor cells. This article proposes the 
use of genetically modified oncolytic viruses as transport vectors for the pre-interfering RNAs to solve the above problems. 
The strategies proposed in this article can be employed to specifically target the MDR genes present in cancer cells, while 
keeping the normal cells untouched and can be used adjunct to chemotherapy to make it efficacious. 
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BACKGROUND 

Abnormal cell division as a result of mutation leads to 
cancer. Today, it is one of the leading causes of mortality 
globally, leading to 8.8 million deaths every year [1]. In a 
global survey carried out in 2015, 90.5 million people were 
said to suffer from cancer, which increases by 14.1 million 
every year and this rate is expected to surpass 20 million by 
the end of 2025 [2,3]. The different treatments involved in 
cancer include chemotherapy, immune therapy, radiation 
therapy and surgery [4,5]. However, the most widely used 
therapies against cancer are chemotherapy and radiation 
therapy [6]. It is evident that with the passage of time the 
cancer cells become more virulent and their resistance to 
chemotherapy increase [7]. The increase in resistance of the 
cancer cells against chemotherapeutic drugs can be 
attributed to the overexpression of Multidrug Resistance 
efflux pumps. 

WHAT ARE EFFLUX PUMPS? 

The efflux pumps are highly conserved P-glycoproteins that 
are imminent on the surfaces of both prokaryotic and 

eukaryotic cells. Dr. Juliano and Dr. Ling were the first to 
detect the presence of efflux pumps in eukaryotic cells (in 
Chinese hamster ovary) in 1976 [8]. Since then, many 
eukaryotic P-glycoproteins have been discovered in the cells 
of CNS, intestinal epithelium cells, liver cells, renal cells, 
stem cells, etc. [9-17]. They play important roles in 
extrusion of toxic materials and are involved in the 
transportation of many important molecules such as lipids, 
cholesterol, chloride ions, cytokines and polypeptides across 
the membrane [18-23]. P-glycoproteins are also evident on 
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the surfaces of CD8+ T cells and Natural killer cells; they 
help in killing the target cells through the release of 
perforins and granzyme B [24]. 

Since the tumor cells emerge from normal cells as a result of 
mutation, they carry with them the genes coding for the 
Efflux pumps. An over-expression of efflux pump proteins is 
evident in a wide range of cancer cells [25-31]. The cancer 
cells overexpress efflux pumps, which defend them against 
chemotherapeutic drugs by actively pumping them out of the 
cell, thus reducing their intracellular concentration. The 
efflux pumps belong to the ABC (ATP binding cassette) 
transporter family which utilizes the energy obtained from 
ATP hydrolysis for the transport of different molecules. The 
most extensively expressed members of the ABC family 
involved in Multidrug Resistance are transport proteins 
ABCB1, ABCC1 and ABG2 [32]. 

In addition, some of the efflux transporter proteins also act 
as MHCs (major histocompatibility complex) and play 
regulatory roles in cell signaling [33]. Several members of 
the ABC transporter family have been depicted to be 
involved in evading apoptosis and inducing proliferation of 
the tumor cells. For example, transport proteins ABCB1 and 
ABCC1 play anti-apoptotic roles in tumor cells by delaying 
response to apoptotic signals [34-36]. Similarly, transport 
proteins ABCC1, ABCC4 and ABCG2 bolster proliferation 
in cancer cells [37-39]. 

NEED FOR A TRANSPORT VEHICLE 

Over the years many researches have been carried out in 
developing drugs targeting the efflux pumps, to be used 
adjunct to chemotherapy. Many inhibitors have been 
developed against the multidrug resistance efflux pumps 
such as quinine, quinidine, verapamil, cyclosporin, PSC-833, 
MS-209 and others [32]. However, they proved to be 
disappointments with very limited rates of clinical success 
[32,40-46]. Most of them cause drug related adverse effects 
due to the lack of specificity, by also damaging the efflux 
pumps that are present on normal cells [47]. 

Efforts to silence the MDR genes have already been carried 
out using different molecular biology tools such as antisense 
therapy, ribozyme therapy and RNA interference [48-50]. 
RNA interference via Small interfering RNA and short 
hairpin RNA designed to inactivate the MDR genes proved 
to be quite efficient in abating drug resistance in cancer cells 
[51,52]. Although RNA interference is an efficient technique 
for gene silencing under in vitro conditions, it fails to meet 
the expectations when subjected to in vivo due to many 
factors such as the low bioavailability of the RNA molecules 
at the target site, as most of them get excreted from the body 
through urine, many are destroyed due to nuclease activity 
and the others fail to enter the cell due to their negative 
charge and large size [53-55]. In addition, many molecules 
that manage to successfully pass through the membrane 
through endocytosis get degraded inside the endosome 

before reaching the cytoplasm [56]. Moreover, using a 
vector that cannot unload the pre-interfering RNA molecules 
specifically at the tumor site may abate the expression of 
efflux pumps in normal cells leading to many adverse effects 
in the body. The above factors mark the need for a vector 
that can safely transport the RNA molecules to their target 
site [51,57-60]. Using oncolytic viruses as transport systems 
for the pre-interfering RNA molecules can solve these 
problems. 

EMPLOYING ONCOLYTIC VIRUSES TO SILENCE 
THE MULTIDRUG RESISTANCE GENES VIA RNA 
INTERFERENCE 

Tumor cells are formed as a result of mutation in normal 
cells which gives them the ability to evade immune 
responses, to proliferate limitlessly and to evade apoptosis. 
This makes them an interesting target for viruses to grow in. 
Some oncolytic viruses exist naturally. However, most of 
them are genetically engineered to make them specific to 
cancer cell. Some extensively employed oncolytic viruses 
are Adenovirus, Chicken anemia virus, Parvovirus, Herpes 
Simplex virus and Newcastle disease virus [61].  

The upcoming topics propose the use of Oncolytic viruses in 
silencing the MDR genes: 

Using viral shells as transport vehicles for pre-interfering 
RNAs 

Certain protein receptors are overexpressed on the surfaces 
of tumor cells. They serve as the entry ligands for many 
viruses. For example, the intra-cellular adhesion molecule-1 
(ICAM-1) and decay accelerating factor (DAF) which serve 
as entry receptors for coxsackievirus A21 are over expressed 
by certain cancer cells [62,63]. Similarly, human ovarian 
cancer cells overexpress α2β1 integrin which serves as the 
entry receptor for echovirus type 1 [64]. The viruses whose 
entry receptors are over expressed by cancer cells can be 
exploited for selectively targeting the tumor cells [61]. This 
targeting strategy is called transductional targeting. 

In case of enveloped viruses, the viral shell comprises of the 
envelope and the capsid, whereas, in case of non-enveloped 
viruses it comprises only of the viral capsid. Since, the 
surface proteins present on viral shells are involved in the 
transductional targeting of tumor cells; they can be used as 
transport vehicles for safely transferring the pre-interfering 
RNAs to the cancer cell, without causing them to intervene 
into normal cells. 

Only the viruses whose entry receptors are overexpressed by 
the cancer cells can be chosen for this strategy. The part of 
their genome coding for the capsid, envelope and other 
associated proteins should be isolated, amplified and 
expressed in a protein expression system. The proteins 
formed will then self-assemble to form functional viral 
shells lacking any genetic material [65-71]. Baculo virus 
expression system is the most widely used protein 



SciTech Central Inc. 
J Genet Cell Biol (JGCB)   90 

J Genet Cell Biol, 2(3): 88-95    Goswami P & Roy P 

expression system for this purpose [72]. At present, many 
virus-like particles lacking genetic material, that mimic the 
original virus have being developed using this method, to be 
used as vaccines to stimulate humoral and cellular immunity 
[65-80]. 

Once the viral shells have been synthesized, the next step 
involves in vitro synthesis of the pre-interfering RNA 
molecules complementary to the target genes [81]. The pre-

interfering RNA molecules to be used can be both short 
hairpin RNAs as well as short double stranded RNAs. The 
synthesized RNA molecules should then be loaded into the 
empty viral vessels. The viral capsids and the interfering 
RNA molecules can be made to self-assemble under in vitro 
condition using the protocol developed by Cadena-Nava et 
al. [82]. This will give rise to genetically modified virus like 
particles (VLPs) that can be used for the specific targeting of 
the target genes present in cancer cells (Figure 1). 

Figure 1. Represents the mode of action of the proposed virus like particles (VLPs). 

Step 1 depicts the attachment of the VLP to the cancer cell 
as a result of ligand-receptor binding. This interaction causes 
the uptake of the VLP through endocytosis as depicted in 
step 2. On entering the cancer cell, the VLP will lyse, 
freeing the RNA molecules into the cytoplasm as in step 3. 
In step 4 the RNA molecules are cleaved by dicer to form 
short interfering RNAs. These small interfering RNAs 
separate into guide RNA and passenger RNA. The guide 
RNA combines with argonaute and other associated proteins 
to form the RISC complex which then binds with the target 
mRNA, leading to its inactivation as depicted in step 5. 

The virus like particles on being injected will get dispersed 
throughout the body though blood. On reaching the tumor 
cells, the viral receptors will interact with the receptors 
overexpressed on the surface of tumor cells leading to its 
attachment [83]. The clustering of receptors will give rise to 
a signaling cascade which will initiate the uptake of the virus 
like particle through endocytosis or macro pinocytosis [83]. 

On entering the cell, the viral capsids will dissolve, releasing 
the pre-interfering RNA molecules into the cytoplasm. 
These exogenous dsRNAs or shRNAs will activate the 
ribonuclease protein Dicer present in the cytoplasm, which 
will cleave the double stranded or hairpin RNAs to form 
short stretches of double stranded RNA about 25 bp long 
[84]. These short double stranded RNAs, also called short 
interfering RNA will then unwind, giving rise to two short 
single stranded RNAs called passenger and guide RNA, 
respectively. The passenger RNA will degenerate, whereas 
the guide RNA will get loaded up on an Argonaute protein 
which will then bind with the target mRNA to form the 
RNA-induced silencing complex (RISC) [85]. The complex 
formed will block the mRNA from getting translated [86]. 
The RISC complex can also induce the Argonaute protein 
“slicer” to cleave the target mRNA and in this way the 
expression of the target gene can be attenuated to a great 
extent [87]. 
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Using oncolytic viruses to carry out DNA vector based 
RNAi 

Although the previously described strategy sounds 
promising, it can be surmised to carry some drawbacks. 
Firstly, the targeting strategy is limited to transductional 
targeting and only a few types of cancer cells have been 
known till date, to overexpress viral entry receptors. 
Secondly, the proposed virus like particles are not capable of 
self-replication, they need to be synthesized manually which 
may lead to an increase in their production cost. 

Creating a self-replicable genetically modified DNA virus or 
a retrovirus, that will be able to replicate inside a wide range 
of cancer cells and will be to produce pre-interfering RNAs 
naturally through transcription can help to counter the 
problems associated with the previous strategy.   

Firstly, the virus should be made nonpathogenic by 
attenuating its harmful genes. Then, based on the 
requirement, the virus should be made cancer cell specific 
by genetically modifying it in accordance with any of the 
following strategies: 

Proapoptotic signaling: Viral intrusion into a normal cell 
can trigger apoptotic signaling cascade which can bring 
about many morphological and biochemical changes leading 
to cell death, thus preventing viral replication [88,89]. Some 
viruses can synthesize certain proteins which can inhibit 
apoptotic signaling thus providing them enough time to 
replicate [90]. However, cancer cells generally have a 
defective apoptotic pathway [91]. If the viral genes coding 
for the anti-apoptotic proteins are mutated then the resulting 
virus will fail to replicate inside normal cells due to its 
inability to inhibit the virus triggered apoptotic pathway 
[92]. However, it will be able to grow inside cancer cells. 
For example, Onyx-15, a genetically modified adenovirus 
with attenuated Eb1 gene can grow selectively in p53 
deficient cancer cells [93]. 

Transcriptional targeting: There are certain essential viral 
genes that are necessary for viral replication. Placing these 
genes under the regulation of tumor specific promoter can 
make the virus tumor specific by seizing its ability to 
replicate under non-tumor environment [94]. Hence the 
viruses will only be able express its vital genes and replicate 
it inside tumor cells. 

Translation targeting: A virus infected cell produces Type 
I IFN (interferon) which ceases protein synthesis in its 
neighboring cells thus making them unfit for viral infection 
[95]. Engineering viruses to initiate a more potent IFN 
response in normal cells will prevent the viruses from 
spreading into its surrounding cells [90]. However, as the 
cancer cells have a defective IFN pathway the genetically 
modified viruses will fail to initiate an IFN response in 
cancer cells thus permitting viral replication inside them. 
Some viruses can block IFN signaling by encoding certain 
proteins that can inhibit the IFN signaling pathway [96]. 

Mutating the IFN inhibiting genes can prevent the viruses 
from replicating in normal cells [90]. On the other hand, the 
virus will be able to replicate in cancer cells as they have a 
defective IFN signaling pathway which cannot suppress viral 
replication [90]. 

The gene suppression strategy used here would be based on 
DNA vector based RNAi technology [88]. After the virus 
has been made cancer cell specific, the next step involves 
constructing a gene which on transcription will give rise to 
shRNAs, complementary to the target gene. The gene should 
consist of a promoter followed by two complementary 
sequences separated by a short non-homologous spacer 
DNA [88]. The two complementary sequences should be 
made in accordance with the sequence of the mRNA to be 
silenced. This gene should then be integrated into the 
genome of the oncolytic virus. 

On being subjected to in vivo trials, the genetically modified 
virus will fail to proliferate inside normal cells. However, on 
infecting a cancer cell it will be able to replicate itself as 
well as transcribe the shRNAs which will then form RISC 
complex with the target mRNA and degrade it using the 
same procedure that was stated earlier. This will diminish 
the expression of Multidrug Resistance efflux pumps in the 
viral infected tumor cells. 

The use of genetically engineered DNA viruses and 
retroviruses offers a wide range of targeting strategies to be 
employed to target a broad range of cancer cells. Since the 
viruses are self-replicable, it will be easy to clone them in 
cancer cell cultures which will also reduce their production 
cost. 

CONSEQUENCES 

The strategies proposed in this article can be used to abate 
the expression of Multidrug Resistance efflux pumps in 
cancer cells. Using the proposed strategy, adjunct to 
chemotherapy will make it more effective. In the absence of 
efflux pumps, the cancer cells will fail to defend themselves 
against the anti-cancer drugs. Hence the chemotherapeutic 
drugs will be able to eliminate the cancer cells without much 
difficulty. This strategy can also be used to target other 
important genes expressed in cancer cells that are also 
common to normal cells. 
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