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ABSTRACT 

Often, geometric growth maximization techniques as presented by (Kelly, 1956; Thorp, 
1962; Vince et. al., 2019 & Vince, 1990) have looked only at such ambits where the implementor was 
concerned with maximizing growth, or more generally, situations where growth was beneficial to the 
implementor (Vince, 2013; Vince, 2015). 

In this paper we examine using these techniques on geometric growth functions where the 
implementor benefits from diminished growth. Certain geometric growth functions accruing against 
the public, often characterized as “growing out of control,” typically meet this criterion. These often 
include medical costs, the growth of populations (e.g., bacteria) or pathogenic infections in a 
population, infected cells in an organism, or even the growth of cumulative national debt. 

Finally, we demonstrate the technique upon this notion of the growth rate of a nation’s cumulative 
debt. Heretofore, debt reduction has been considered along the one-dimensional tug-of-war between 
reducing government services or increasing taxes. The technique presented, albeit very simple, 
provides a politically-agnostic means of debt-reduction. We provide further examples of potential 
applications in terms of mitigating malevolent cellular growth and concerns for applying the material 
in the spread of pathogenic outbreaks. 

BACKGROUND 

Interaction with stochastic, time-series data is implicitly an exercise 
in geometric growth maximization. If we consider a random stream of outcomes over 
time, in almost every case, resources available to allocate to the immediate outcome 
is an unavoidable result of the cumulative trail of outcomes to that point in time. The 
results compound. There exists not-so-common exceptions to this compounding 
effect (consider a retiree who receives a pension he does not need in order to meet 
his expenses, which he chooses to wager on a particular gamble with each pension 
distribution), but in most cases compounding is implicit, and we restrict our 
discussion to such ever-prevalent cases. 

Maximization of results from stochastic, time-series data has a long history, 
beginning with (Bernoulli, 1738) who, in 1738, provides the first known reference 
to “geometric mean maximization”.  

1Correspondence to: Ralph Vince, 405 Lexington Ave - The Chrysler Building, 26th Floor, New York 

NY 10174, USA. E-mail: rvince99@hotmail.com 
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This 1738 paper, written in Latin containing the first known reference to geometric 
mean maximization, is translated into English in 1954 (Bernoulli, 1738). 

In his 1956 paper, (Kelly, 1956) showed how Shannon's “Information 
Theory” (Shannon, 1948) could be applied to the problem of a gambler who has 
inside information in determining his growth-optimal bet size. 

Six years later, (Thorp, 1962) applies the concept to the actual gambling 
situation presented in the game of Blackjack. Thorp would later provide closed-form 
solutions. 

In 1990, (Vince, 1990) provides a solution for capital market applications, 
and by 2019 in (Vince & Optimal, 2019) provides the full (non-asymptotic, non-
instantaneous) solution for geometric mean maximization for all conditions. 

Other avenues where other variants of geometric growth amplification are 
shown to be “optimal”, for criteria other than outright maximization appear in 
(Lopez, Vince & Zhu, 2019; Vince & Zhu, 2013; Vince & Zhu, 2015). 

Yet everything up to such a point refers to geometric growth as something 
that is desired, beneficial, and seeks ways to maximize the benefit derived from such 
streams of stochastically-generated outcomes. 

From (Vince & Optimal, 2019) we find, in simplest form, geometric growth is 
maximized for a single stream (as opposed to multiple, simultaneous streams) of Q 
stochastic outcomes2, x, asymptotically (i.e., as the number of trials approach 
infinity), by that fraction of the total cumulative pool at any i, by that value for f 
(0…1) which maximizes the geometric mean outcome, G: 

𝐺ሺ𝑓ሻ ൌ ට∏ 1 ൅ 𝑓ሺെ𝑥௜ min ሺ𝑥ଵ … 𝑥ொ⁄ ሻሻொ
௜ୀଵ

ೂ
           (1) 

Where: 

G =the probability-weighted geometric mean outcome of the stream of outcomes. 
Q = the number of outcome events in the stream of outcomes. 
f =the constant fraction of the total pool of resources allocated on each outcome in 
the stream. 
xi =an individual result of the i’th outcome event. 

n.b. min (x1…xQ) must be a negative number, otherwise the value for f which
maximizes G(f)is 1 for all possible values of Q.

Let us examine a simple stream of outcomes which 

 are binomially-distributed, such as the results of a coin toss. We will assign 
a value of 2 if the coin lands favorably to us, and a value of -1 if it lands the opposite 
way, unfavorable to us. 

1As mentioned, the value for f which maximizes G(f) in (1) is asymptotic with respect to ever‐greater 

Q. When Q=1, if the probability weighted mean value for x is positive, then G will be maximized at a

value of 1, and this will approach the value given  in  (1) asymptotically with ever‐higher Q.  If the

probability‐weighted mean value for x is zero or less, then the function for G is maximized at f=0,

and remains for all possible values of Q.
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Thus, if one seeks to find that value for f which maximizes G(f), equation (1) is 
properly expressed as: 

lim
ொ→ஶ

𝐺ሺ𝑓ሻ ൌ ට∏ 1 ൅ 𝑓ሺെ𝑥௜ min ሺ𝑥ଵ … 𝑥ொ⁄ ሻሻொ
௜ୀଵ

ೂ
         (1) 

The non-asymptotic formulation, that is, the determination of the growth-optimal 
value for f for a finite-length stream of stochastic outcomes (Q <∞) is given in 
(Vince, 1995). 

Figure 1. Equation (1) for f=0 to 1. 

It is important to note that growth gets ever greater as f increases from 0 to 
its asymptotically growth-optimal value between 0 and 1, as given in equation (1) 
and then decreases. That is, asymptotically, as Q gets ever-greater, growth is reduced 
with ever-greater values for f beyond that given in equation (1). 

Thus, we find for our 2: -1-coin toss, by Equation (1), we see that geometric 
growth of our pool is achieved as Q, the number of trials, gets ever-greater, at f=.25 
as we see in Figure 1. 

If we took this stream of outcomes, 2, -1, where Q=2, and applied the values 
to (1), we would find that G(f) is maximized at f=.25 where G (.25) =1.06066.  Thus, 
if we were to wager .25 of our entire pool on each coin toss in sequence, regardless 
of sequence, we would maximize our gains as Q got ever greater. 

𝐺ሺ.25ሻ ൌ ට൫1 ൅ .25ሺെ2 െ1⁄ ሻ൯𝑥൫1 ൅ .25ሺെ െ 1 െ1⁄ ሻ൯
ೂ

 

𝐺ሺ.25ሻ ൌ √1.5 𝑥 .75
ೂ

 

𝐺ሺ.25ሻ ൌ 1.06066 

This value, 1.06066, the geometric mean return outcome, represents the 
multiple we would make on our pool, on average, with each coin toss, with each 
event, since we are “reinvesting” after each toss (i.e., our pool, from which we take 
a fraction, f, of to wager on the next toss, is the cumulative result of the outcomes of 
all subsequent tosses). This number is necessarily less than the “average” (the 
arithmetic mean return per event): 

𝐴ሺ𝑓ሻ ൌ
∑ ଵା௙ሺି௫೔ ୫୧୬ ሺ௫భ…௫ೂ⁄ ሻሻೂ
೔సభ

ொ
(2)
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Just as there is a geometric mean outcome, G, for any value for f, so too is there an 
arithmetic mean outcome, we shall designate as A, and for our 2:-1 coin toss, where 
f=.25, we find G=1.06066 and, from (2), A = 1.125. 

SEEKING GEOMETRIC GROWTH ATTENUATION OR 
DIMINISHMENT 

We shall now play devil’s advocate, where our goal, when faced with the 
growth of such streams which appear with a geometric growth amplifier innate to 
them, is to attenuate rather than amplify such growth rates. Typically, the literature 
on the matter has previously been focused on maximizing growth in a stream of 
stochastic outcomes. Now, we shall examine ways, first introduced in (Vince, 1995), 
to use the ideas to reduce geometric growth in stochastic outcomes. The real-world 
is rife in systems where we would desire this.  Among these types of phenomena are 
things like the growth of bacteria in a petri dish, the spread of infectious disease in a 
population of organisms, the spread of pathogenic cells within an individual 
organism, or even, say, the growth rate of a nation’s cumulative debt. The same 
mathematical formulations are at work as when we desire growth.  

The problem is, in looking for diminishment in these aforementioned types 
of geometric growth situations where we seek diminishment, what is the f value? 
Clearly, there is no such governing value of the growth rate of a nation’s aggregate 
debt’s rate of growth or in other situations where we desire geometric growth 
attenuation or diminishment. Where do we obtain an available parameter to affect 
the formulation which belies the geometric growth function here? 

Just as there is a geometric mean outcome, G, for any value for f, so too is 
there an arithmetic mean outcome, we shall designate as A, and a variance, we shall 
designate as V, to the stochastic stream of outcomes. 

For our 2: -1-coin toss, we thus have corresponding values of 1.06066 for 
G, 1.125 for A, and .140625 for V, the population variance. Since standard deviation, 
SD, is simply the square root of variance, we can express this SD = 0.375. 

We can thus summarize as follows for this simple, binomial case: 

f = 0.25 

G = 1.06066 

A = 1.125 

SD = 0.375 

Serendipitously, as demonstrated in (Henry, 1959), these values comport 
perfectly to the Theorem of Pythagoras as:  

A2 = G2 + SD2  (3)
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Figure 2. Pythagorean relationship of A2=G2+SD2. 

Our goal here, as the advocate of the devil, is to seek geometric growth 
diminishment. Thus, we seek to make the value for G be as small as possible, as it 
can be said that the growth of the pool after Qevents is GQ.  

With Q as a given, any reduction in SD that can exceed an offsetting increase 
in A will reduce G, and, geometrically, the size of the pool after Q events, GQ.  
From this, we can state the following: 

With respect to growth multiples, any increase in their variance, V, affects 
the geometric growth rate, G, by an amount equal to an equivalent decrease 
in the arithmetic average - squared! 

In most human endeavors, when confronted with a malevolent geometric 
growth function, man’s first reaction is to seek to minimize the (arithmetic) average 
growth rate, A, when equally as much beneficial fruit can be derived merely by 
increasing the period-on-period variance, V. 

Variance, V, or it’s square root standard deviation, SD, depending on the 
function, often tend to move with respect to A in a non-linear manner; i.e., often, as 
A increases, so too does SD, with the latter increasing at a faster rate. This leads to 
the familiar peak in G (0...1) such as we see in Figure 1. 

However, in many malevolent, naturally occurring growth functions, we are 
able to effect SD, to increase SD, without a corresponding increase in A. If, in Figure 
2, one increases SD without a corresponding increase in A of the same increase as 
being applied to SD, then G is necessarily smaller.  

Any increase in the base of a right-angled triangle without any equivalent 
or greater increase in the hypotenuse will reduce the vertical leg, will achieve our 
goal, will diminish growth. 

We thus find there exists an isomorphism between the f value illuminated in 
Section 1 and the cosine of the standard deviation and mean of the period-on-period 
growth in a stream of malevolent stochastic events. Graphically, this is depicted in 
Figure 3. 
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Figure 3. The isomorphic relationship to f and the cosines of SD/A. 

Figure 4. The isomorphic relationship to f and the cosines of SD and A. 

Figure 4 bears out that the isomorphic relationship simply tells us that the 
cosines can be “mapped” to f-values, but that the numeric values aren’t what matter 
and the values themselves along the vertical axis aren’t of importance. The vertical 
axis simply represents the degree of some directed effort, be it by increasing the size 
of an allocation or increasing the variance in a stream of stochastic outcomes. It is 
the curve, the shape of the curve, and where we position ourselves on this curve based 
on our directed effort that matter. We are considering the fact that the curve has a 
peak beyond which geometric growth begins to diminish, and may allow us the 
opportunity to potentially navigate there through our directed effort. 

In the simplest case, if we disregard A varying with respect to V, we can 
unequivocally then state that for constant A, that is if we can hold A constant, any 
increase in V reduces G. If A increases with respect to V, we witness a curve with a 
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peak in the horizontal range of values beyond which geometric growth begins to 
diminish. 

Figures 1, 3, and 4 show where A varies with changing V. This is not 
necessarily the case however, as often variance can be increased without increasing 
the arithmetic average in a sequence, particularly those of “malevolent” character 
where our directed efforts can be used to increase variance. When A does not increase 
with increasing V, the peak of the curve is at its left-most point, that point where f=0 
and cos(SD/A) = 1 (i.e., the “base” of the triangle is zero-- is it no longer a triangle 
at this point but merely a vertical line). 

Thus, there exists two important points in the range of values of “directed 
effort,” either with respect to percentage of a resource we allocate to the multiples of 
a stream of stochastic outcomes or the cosines of the standard deviation to means of 
these outcomes. 

The two points are portrayed in Figure 5. Working from the left, the first of 
these points is that point where the curve begins descending, where the slope of the 
first derivative turns negative. This represents that point where as f (the “fraction 
allocated”) increases further, or the size of the base (V) relative to the hypotenuse (A) 
increases further, geometric growth becomes less. 

Of note, if A does not increase with increasing V, the peak of the curve is at 
the leftmost bound, and hence this first geometrically significant point is immediately 
to the right of the leftmost bound by an infinitesimally small amount; i.e., as soon as 
f or V increases, G decreases. 

Figure 5. The two points of geometrical significance in growth diminishment. In this graphic 
(2: -1-coin toss) A increases with increasing V. 

The second important point is that point where the value for G crosses 1 to 
the downside, and we refer to this point as ψ. Any given number multiplied by a 
number less than 1 will have a lower product than the given number. Repeatedly 
multiplying the resultant product by a number less than 1 will cause the resultant 
products to get ever-closer to zero. A value for G less than unity will cannibalize 
itself as more periods accrue. 

From this, we can see that Sir Ronald Fisher’s fundamental theorem of 
natural selection (Ronald, 1930), which states: 
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“The rate of increase in fitness of any organism at any time is equal to its 
genetic variance in fitness at that time.” 

Provides only a partial explanation; it consists of looking at the natural world 
as it exists in nature, to the “left” of the peak where A increases with increasing V. 
However, by increasing this variance beyond the peak, we can see that such fitness 
diminishes with further increases in variance, and at the point ψ extinction is 
ultimately assured. 

In the natural world, the point to the right of the peak is obscured; too much 
variance in fitness, and the organism no longer exists. 

The Pythagorean relationship in (3), expressed between the arithmetic mean 
of growth multiples and the geometric mean and standard deviation of these 
multiples, is exact if the stream of multiples is binomially distributed. 

Other measures for estimating geometric growth have been proposed and can 
sometimes be more accurate and deserve discussion. 

In (de La Grandville, 1989) speaks of misconceptions in estimating long-term 
returns and refers to the popularity of one widely held formula for estimating 
geometric returns as being “approximately equal to the arithmetic average minus half 
of the variance,” or: 

G = A – V / 2  (4) 

Another formula, common in quantitative finance for estimating the geometric mean 
return which provides an exact estimate when the returns are lognormally-distributed 
is: 

𝐺 ൌ  𝐴 √1 ൅ 𝑉 𝑥 𝐴ିଶ⁄  (5) 

Generally (3) will be less than (5). Typically, (3) is not greater than the actual 
G for most real-world, non-binomially-distributed data sets. 

All examples for estimating the geometric return, Equations (3), (4), and (5), 
generally work for any return sample, and establish approximate relationships 
between the geometric and arithmetic averages and the variance. These formulas are 
all based on Taylor series expansions up to the second degree. 

The question as to “Which is best?” is a debate for another paper as all three 
of these approximations provide values for G which begin decreasing at some level 
of V in the domain of values for V. All three approximations see the curve for G bend 
downwards at some point as V increases. 

For various, real-world data sets of various distributions, we find that the 
value for Equation (3), though for some data sets not the best estimation for G of the 
three, is never the worst estimation for G of the three equations. For this reason alone, 
in the real-world where often, the distribution of a priori data is unknown, Equation 
(3) is in fact, the best estimator for G.

Finally, when we get into the lower values for the cosine of SD over A, that 
is, when V begins to get larger with respect to A, when the points of geometrical 
significance are encountered, particularly by the time V is at a critical enough value 
to encounter the point ψ, Equations (4) and (5) are unable to keep pace. For the 2: -
1-coin toss, this becomes evident in Figure 6 and 7.
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Figure 6. Three variants for estimating G in the 2: -1-coin toss, all of which bend downwards 
at some increased V. The Vertical scale here is G= 0 to 1.1. 

Figure 7. Three variants for estimating G in the 2: -1-coin toss, all of which bend downwards 
at some increased V. This is the same as Figure 6, but here the vertical scale is G= 1.0 to 1.08. 

This is central to our argument, that at some point of higher V, G is decreased. 
All three values for estimating G support this contention. However, we find that 
using the Pythagorean estimate of Equation (3) to be the best fit for our purposes and 
can be certain, regardless of the distribution of outcomes we will be applying it to, it 
will never be the worst estimate, and most importantly, that by increasing variance, 
at some increased value (perhaps immediately) we will begin to see reductions in G. 

Examples 

Example 1 – A politically agnostic means of deficit reduction 

For the sake of illustration, we demonstrate the method in a simplified 
example using a binary stream of stochastic outcomes. As pointed out, this stream 
need not necessarily be binary-distributed, we merely use it for simplicity’s sake to 
illustrate the method. 
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We examine the period-on-period percentage changes in growth and re-
express these as a Multiple on the aggregate of the prior period as 1 plus the period’s 
percentage growth. 

We further introduce in this example the notion of Constant Dollars 
Forward, which represents the amount of cumulative debt (it's initial principal plus 
its service) represented by an individual silo of one million going forward, as of a 
given start date. Thus, each period forward will see new, non-debt-service borrowing 
that is not addressed here. Rather, this addresses the debt-service cost of one million 
in debt into the future. 

Our first example sequence shows a constant increase of 99.5% per period in 
debt service, which appears as follows for ten periods (Table 1). 

Table 1. Constant increase of 99.5% per period in debt service 

Period Percent Multiple Constant Dollars Forward 

0 $1,000,000 

1 99.5% 1.995 $1,995,000 

2 99.5% 1.995 $3,980,025 

3 99.5% 1.995 $7,940,150 

4 99.5% 1.995 $15,840,599 

5 99.5% 1.995 $31,601,995 

6 99.5% 1.995 $63,045,980 

7 99.5% 1.995 $125,776,730 

8 99.5% 1.995 $250,924,577 

9 99.5% 1.995 $500,594,531 

10 99.5% 1.995 $998,686,088 

Since the stream is the same 99.5% from one period to the next, the arithmetic 
average, A, and the geometric average, G, of the period-on period multiples is 
identical at 1.995. Thus, for this constant growth sequence, we have: 

A=1.995; 
V=0 
SD=0 
G=1.995 

There is no variance in this first sequence. In this example, we are able to 
keep A constant while increasing variance, V, and so the introduction of any variance 
– that is, increasing the base of a right-angled triangle while holding the length of the
hypotenuse constant, must result in a shorter vertical leg, G.

We see this when we amend the sequence to be simply the alternating binary 
distribution of 100% and 99% increases (Table 2). 

The introduction of variance, even as small as .000025 in the period-on-
period growth multiples, shows a growth rate diminished from 1.995 when variance, 
V, was 0 to 1.994993734 even though the (arithmetic) average period-on-period 
growth multiple remains at 1.995, or an average gain of 99.5% per period. The 
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cumulative growth at the end of the period is reduced simply by the introduction of 
variance. 

Table 2. Amended sequence. 

Period Percent Multiple Constant Dollars Forward 

0 $1,000,000 

1 100.0% 2 $2,000,000 

2 99.0% 1.99 $3,980,000 

3 100.0% 2 $7,960,000 

4 99.0% 1.99 $15,840,400 

5 100.0% 2 $31,680,800 

6 99.0% 1.99 $63,044,792 

7 100.0% 2 $126,089,584 

8 99.0% 1.99 $250,918,272 

9 100.0% 2 $501,836,544 

10 99.0% 1.99 $998,654,723 

A= 1.995 

V= 0.000025 

SD= 0.005 

G= 1.994993734 

Unlike Figures 1, 3, and 4, where the arithmetic average growth rate, A, 
increased with respect to variance, V, and hence the geometric average growth rate, 
G, had a peak farther down range than the leftmost values on the horizontal axis of 
f=0 or cos(SD/A)=1, when A does not increase with increased V (as may be the case 
in real-world applications of directed efforts to increase period-on-period variance) 
we find G achieves its peak at the leftmost values and decreases from there with 
increased directed effort. 

To continue to increase this period-on-period variance we find, still holding 
the (arithmetic) average growth per period at 99.5%, represented as the binary 
sequence 200, -1 (Table 3). 

The period-on-period growth rate, G, is further reduced to 1.723368794, and 
the total growth of the starting amount of $1,000,000 is now cut to less than 1/4th 
over ten periods of what it was at no period-on-period variance. 

Assuming we can increase variance without bound, we examine the sequence 
272, -73, which shows a period-on-period average growth rate, A, of 1.995 and 
variance, V, increased to 2.975625 (Table 4). 

Notice the Constant Dollars Forward has barely increased over this sequence 
of 10 periods. We increase the variance by one more degree at the sequence 273, -
74, which still has an arithmetic average growth rate, A, of 1.995 (Table 5). 

We now see our geometric average growth rate, G, to be less than 1 at 
0.98478424 for this sequence. We are now past the point ψ in terms of the size of the 
base, SD, with respect to the hypotenuse, A, and the sequence has now thus become 
terminal. This is so even though this sequence with an A of 1.995 thus grows at an 
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(arithmetic) average growth of 99.5% per period. It is still, by virtue of increased 
variance, terminal. 

Table 3. Amendments to continue increase of period-on-period variance. 

Period Percent Multiple Constant Dollars Forward 

0 $1,000,000 

1 200.0% 3 $3,000,000 

2 -1.0% 0.99 $2,970,000 

3 200.0% 3 $8,910,000 

4 -1.0% 0.99 $8,820,900 

5 200.0% 3 $26,462,700 

6 -1.0% 0.99 $26,198,073 

7 200.0% 3 $78,594,219 

8 -1.0% 0.99 $77,808,277 

9 200.0% 3 $233,424,830 

10 -1.0% 0.99 $231,090,582 

A= 1.995 

V= 1.010025 

SD= 1.005 

G= 1.723368794 

Table 4. Increasing variance without bound and variance increased. 

Period Percent Multiple Constant Dollars Forward 

0 $1,000,000 

1 272.0% 3.72 $3,720,000 

2 -73.0% 0.27 $1,004,400 

3 272.0% 3.72 $3,736,368 

4 -73.0% 0.27 $1,008,819 

5 272.0% 3.72 $3,752,808 

6 -73.0% 0.27 $1,013,258 

7 272.0% 3.72 $3,769,320 

8 -73.0% 0.27 $1,017,717 

9 272.0% 3.72 $3,785,905 

10 -73.0% 0.27 $1,022,194 

A= 1.995 

V= 2.975625 

SD= 1.725 

G= 1.002197585 
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Table 5. Variance increased by one more degree. 

Period Percent Multiple Constant Dollars Forward 

0 $1,000,000 

1 273.0% 3.73 $3,730,000 

2 -74.0% 0.26 $969,800 

3 273.0% 3.73 $3,617,354 

4 -74.0% 0.26 $940,512 

5 273.0% 3.73 $3,508,110 

6 -74.0% 0.26 $912,109 

7 273.0% 3.73 $3,402,165 

8 -74.0% 0.26 $884,563 

9 273.0% 3.73 $3,299,420 

10 -74.0% 0.26 $857,849 

A= 1.995 

V= 3.010225 

SD= 1.735 

G= 0.98478424 

Thus, an initial silo of the growth of $1,000,000 in debt service has been 
broken, and at the current average growth rate and variance will diminish to nothing 
in time. Even if the average growth rate, A, increased with respect to time, there still 
exists a value for V which will cause the process to self-cannibalize. 

Variance in a nation’s cumulative debt is affected by tax policy, sporadic 
principal paydowns, and rates of borrowing which are, at the shorter maturities at 
least, influenced by the policies of central banks.  

The technique is politically agnostic, and there is no reason why the period-
on-period variance should not be among the primary considerations of policymakers 
in such matters. These are economic gains to the population at large that are 
heretofore being foregone, and would be acceptable to all regardless of politics. 
Further, the matter is rife in potential fruit for medical and pharmacological 
researchers. 

However, lawmakers and central bank policy makers - practitioners working 
to diminish a nation’s cumulative debt, may rightfully object that such an example 
disregards a plethora of real-world constraints they are up against. Similarly, 
applications in the biological sciences – epidemiology, pharmacological dosing, etc., 
may make similar arguments against the technique (e.g., the human body could not 
survive the higher doses of a drug necessary in certain periods required to increase 
period-on-period variance).  

These are all valid arguments. The purpose of this paper is to introduce the 
technique in pure, theoretical form, that actual application left to the practitioners 
where the technique might be applied. Nevertheless, with these caveats in mind we 
examine a naïve, hypothetical epidemiological example of how this principle can be 
useful. 
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Example 2 – Applications involving malevolent cellular growth 

In the following example, we consider a bacterial culture in a petri dish which 
we wish to diminish via an antibiotic. Let us assume the growth rate of this culture 
is 1.08 per unit time. That is, it is increasing in size by a multiple of 1.08 as each unit 
of time transpires. In other words, it grows 9% in size for every unit of time. 

If left untreated after ten units time, we find it has therefore grown to: 

G = 1.0810=2.158925 times its original size 

Further, since it is left untreated, we determine its variance, V, in period-on-period 
growth to be 0, hence, the arithmetic average growth rate, A, is equal to 1.08 and the 
geometric average growth rate, G, is per Equation (3). 

Generally, antibiotics are prescribed in a manner so as to induce a constant 
blood level of the antibiotic. The effect, in terms of this perspective is that we have 
reduced G while leaving V still 0, and hence have obtained this resultant lower 
geometric average growth rate (the only factor in this perspective we observe directly 
in this example), G, solely by reducing A, the arithmetic average growth rate. 

Mathematically, we know two things: 

1. Any increase in standard deviation, SD, in period-on-period growth (which
is the square root of V) is akin to a decrease in A, the arithmetic average
period-on-period growth rate. Thus, if we can increase V at a faster rate than
A increases, we gain by this action in terms of diminishing the average growth
rate per period, G.

However, since usually in increasing variance, the average arithmetic growth
rate, A, also increases

2. At that point where A2 – V< 1, we have reached point ψ where growth
diminishment is assured by virtue of this increase variance as shown in
Figure 8.

Figure 8. Since A tends to increase as SD increases when we alter a blood level to a non-constant 
state, the function curves over and at a certain critical point, ψ, where the values are increased. At ψ 

the function for the growth rate, G, crosses below 1 and hence diminishment is assured. 
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To invoke variance, we must now administer the antibiotic in a manner which 
is counter-intuitive and administer it in a manner where we do not induce a constant 
blood level. 

We shall assume in this hypothetical example that the prescribed dosage for 
this type of bacterial culture at this level would be to apply 100 mcg of the particular 
antibiotic per unit time. 

In maintaining a “constant blood-level” of antibiotic, by applying the 
prescribed amount per unit time consistently, we have minimized variance.  This is 
the common manner in which antibiotics are used. 

As time elapses, we can measure the amount of culture in the petri dish to 
determine the growth rate per unit time. Let us suppose we find that after 10 units of 
time, our culture has shrunk to 60% of its original size from when we began applying 
100 mcg of antibiotic per unit time. 

Thus, the growth rate, G, can be determined to be: 

G = 0.6(1/10) = 0.6.1=.9502 

Thus, applying 100 mcg per unit time sees the culture grow as the size of the culture 
for the previous time unit times 0.9502. 

Looking at this then, since our Variance, V, is 0, then our arithmetic growth rate per 
unit time, determined from Equation (3) is: 

A2 = G2 + SD2 = G2 + V 

Since V=0, then A=G in this case, and thus A=.9502 also. 

We see then that without 100mcg per unit time applied to the culture, the 
culture will grow at a rate of 1.08 per unit time, and with the 100mcg constant-level 
antibiotic treatment, it will grow at a rate of .9502 per unit of time (i.e., since it grows 
by its multiple per unit time, it “shrinks” per unit time when the multiple is less than 
1). 

Given the nature of this example, we do not see the arithmetic average growth 
rate directly but rather the geometric average growth rate. Hence, we must calculate 
the arithmetic average growth rate from the geometric average and the variance in 
period-on-period growth. 

Furthermore, since we also cannot examine the variance directly either 
(because the variance we witness is in period-on-period geometric growth, not the 
arithmetic data underlying it from which the variance must be determined) we are, 
in effect, blind to the inputs of A and V (or SD) in the critical Equation 3 from which 
we determine that A2-V will give us that growth-diminishment critical point of ψ 
where growth-diminishment is mathematically assured. 

Nevertheless, we can extrapolate, for dosages and schedules of sporadic 
administration what the curve for G, the period-on-period growth rate as depicted in 
Figure 8 may be. 

We induce variance through such a seemingly heterodox schedule of 
administration. Any heterodox schedule can be attempted, plotted and the critical 
points discerned. In addition to the point ψ, since increasing variance initially 
increases A at a rate such that G increases (as depicted in Figure 8), the peak of the 
curve for G with respect to the cosine(SD/A) is too, a geometrically-critical point 
representing that point where increases in variance, V, now begin to decrease the 
growth rate, G.  
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We demonstrate here by a very simple, hypothetical schedule with naïve 
assumptions (so as to sketch out the principle). Rather than administer our 
recommended dosage of 100mcg for every period, we shall administer twice that 
(with the naïve assumption that it will give us twice the shrinkage in growth as with 
100 mcg), and administering this only every other period (and thus the assumption 
that the growth for these intervening periods is the growth rate, if left entirely 
untreated, of 1.08).  

We sketch this hypothetical for illustrative purposes (Table 6). 

Table 6. A hypothetical schedule for illustrative purposes. 

Period Percent Period Multiple Culture Size Multiple 

0 1 

1 -9.96% 0.9004 0.9004 

2 8.00% 1.08 0.972432 

3 -9.96% 0.9004 0.875577773 

4 8.00% 1.08 0.945623995 

5 -9.96% 0.9004 0.851439845 

6 8.00% 1.08 0.919555032 

7 -9.96% 0.9004 0.827967351 

8 8.00% 1.08 0.894204739 

9 -9.96% 0.9004 0.805141947 

10 8.00% 1.08 0.869553303 

A= 0.9902 

V= 0.00806404 

SD= 0.0898 

G= 0.986119668 

And after 10 periods of such alternating double-treatments, we find growth has been 
reduced by nearly 13%, depicted in Figure 9. 

This simple, hypothetical schedule is but one schedule – an infinite number 
are available and if the host can sustain the schedule, then there exists a schedule of 
administration more effective than the accepted, outright, constant-blood level 
recommend dosages. Mathematically, therefore, there exists many schedules that are 
more beneficial provided the host can sustain the schedule. 

We have been discussing the growth of bacteria in a petri dish, but the same 
notion can be extended to a bacterial infection in a human being, e.g., an upper-
respiratory infection and antibiotic treatment. Again, the critical caveat is if the host 
can sustain the schedule being the limiting factor. Different antibiotic treatments can 
be handled in varying doses differently, and thus the principle of increasing the 
variance also affects which antibiotic to invoke. 

Further, not only is the principle applied with this caveat to bacterial 
infections but other malevolent cell function conscriptions as well, such as cancer 
and potential chemotherapy dosages and abilities to sustain higher dosages, with 
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some chemotherapies and doublets thereof more easily sustained at the varying 
dosages than others, thus becoming of possibly greater concern, ceteris paribus. 

Figure 9. Growth of applying 200 mcg antibiotic every other period to induce variance beyond ψ. 
The growth rate assures total eventual diminishment. 

Example 3 – Pathogenic spread through a population 

Thus far we have looked at an example of an out of control national debt, as 
well as certain infections and malevolent cellular conscriptions within an organism. 
We can also apply these simple properties to the growth function innate in a 
pathogenic outbreak between organisms themselves. This too is a geometric growth 
function, and the effect of increasing the period-on-period variance in growth to tame 
the function applies as well. 

Let us consider a population of organisms, human beings in the immediate case, 
where a viral outbreak occurs. The problem in application of these properties in all 
cases – not just the examples cited here in is two-fold: 

1. How can we induce greater period-on-period variance (i.e.,what actions can
we take to migrate rightward on the horizontal axis of Figures1,3,4,5,6,7, and
8)?

-and-

2. Can we induce variance safely enough that we can achieve the growth-
terminal critical point ψ?

Inducing period-on-period variance can be achieved through various possible 
measures with the one(s) best suited determined by qualified epidemiologists. These, 
below, are a suggested sampling of possibilities: 

1. Quarantine, much like an antibiotic or chemotherapy in the malevolent cellular
growth example, a sporadic period between serious, hard lock-down and none-at-all.

2. Prophylactic measures (usually pharmacological) even if only to segments of the
population sporadically, to induce variance.

3. Vaccination - which, when applied to the entire population, liberates the
population from that pathogenic event, but even if to only part of the population will
induce variance.
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These measures can provide a viable stop-gap for situations involving limited 
resources if they induce enough variance in the period-on-period growth rate of 
infected individuals within a population. 

If we can induce variance in the spread of a pathogen within a population and 
do so safely such that the invoked variance is of degree sufficient to achieve the 
growth-terminal critical point ψ, the growth curve is broken. 

In the particular case of attempting to invoke variance in period-on-period 
growth to mitigate the spread of a pathogenic outbreak, it is vital to avoid entropic 
outcomes. That is to say, if one measure is being used to induce variance, other 
measures must not interfere in such. In inducing variance, a wave function is created 
on what otherwise is a simple curved function of increasing spread. If multiple wave 
functions are overlaid such that peaks and troughs cancel, which, conceivably could 
occur if multiple avenues of inducing variance are invoked, especially in 
uncoordinated fashion, the campaign to reduce the spread, to break the growth 
function through increased period-on-period variance in growth, will fail. 

CONCLUSION 

We have demonstrated how increasing variance in geometric growth 
rates can diminish geometric growth. We find here the aspects in the underlying data 
that are related to the geometric growth rate by a Pythagorean or closely-Pythagorean 
relationship, depending on the distribution of outcomes. These three components are 
the arithmetic mean growth rate, A, the geometric mean growth rate, and the variance 
(or standard deviation in growth rates). When the arithmetic growth rate squared less 
the resultant variance is 1 or less, the growth will ultimately cease (as multiplying 
any product repeatedly by a number less than 1 yields a new product approaching 
zero). 

We examined growth rates with respect to a fraction of resources to allocate 
to risk, or in proxy of that, growth rates with respect to the cosine of the standard 
deviation in period-on-period outcomes and their arithmetic average. Often we only 
have the geometric average period-on-period growth rate, and must sketch out what 
the variance or standard deviation is, as well as the arithmetic average growth rate, 
and where this is not feasible, we must seek a schedule of increasing variance until 
the growth-terminal critical point ψ is arrived at. 

We have looked at examples which are either politically agnostic, or uses less 
resources, or heterodox approaches than conventionally used for “bending the curve” 
of malevolent geometric growth. We have examined simple, hypothetical examples 
where this might be applied in terms of a nation’s aggregate debt, in terms of 
malevolent cellular growth, and in terms pathological spread through a population. 
Each example also is riddled with specific concerns, such as “can the host survive 
increased, sporadic doses,” as well as avoiding entropic outcomes in more social 
applications such as pathological spread in a population. 

The examples provided, though hypothetical and naïve to their field of 
application, are provided as trail heads, as a means of sketching out how one might 
go about attempting to find a means to apply the principle of increased variance and 
to highlight potential pitfalls to be avoided for the particular application. 
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