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ABSTRACT 
In 1957, Francis Crick explained biological information flows from DNA to RNA to protein. Advances in biological studies 
reveal this can be modified to DNA, epigenetic, RNA, protein and metabolite. Fanconi Anemia (FA) signaling mainly repairs 
DNA damage and thus plays a pivotal role in maintaining the integrity of the genome. Impaired FA signaling is involved in 
all steps of the biological information flow, contributing to the development of a variety of human disorders, especially aging 
and cancers. Here we discuss how FA signaling maintains biological information flow to protect human cells from going 
awry and developing into disease. 
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Abbreviations: FA: Fanconi Anemia; ICL: Interstrand Crosslink; NER: Nucleotide Excision Repair; HR: Homologous 
Recombination; FAAP: FA Associated Protein; RPA: Replication Protein A; MMC: Mitomycin C; AML: Acute Myeloid 
Leukemia; TCGA: The Cancer Genome Atlas; HNSCC: Head And Neck Squamous Cell Carcinoma; CRC: Colorectal 
Cancer; MMR: Mismatch Repair; aa: Amino Acid; TNBC: Triple Negative Breast Cancer; ALL: Acute Lymphoblastic 
Leukemia; PAS: Polyadenylation Site; APA: Alternative Polyadenylation; miRNA: MicroRNA; NSCLC: nonsmall cell lung 
cancer; SCC: Squamous Cell Carcinoma; LOH: Loss Of Heterozygosity; MiTF: Microphthalmia-Associated Transcription 
Factor; TMZ: Temozolomide; TFG: Trk-Fused Gene; MS: Mass spectrometry; Me-D/Me-P: Methylated Distal/Methylated 
Proximal; PARPi: PARP inhibitor; BER: Base excision repair; SSB: Single strand break; DSB: Double Strand Break; CLL: 
Chronic Lymphocytic Leukemia; HGSOC: High-Grade Serous Ovarian Carcinoma; PDX: Patient-Derived Xenograft; 
DNMTi: DNMT Inhibitor 

INTRODUCTION 

The central dogma of molecular biology describes the 
transfer of information during DNA replication, transcription 
to RNA and translation to proteins [1,2]. However, Temin 
and Baltimore’s discovery of reverse transcriptase in 1970 
provided evidence that information can be transferred in the 
opposite direction, from RNA to DNA [1]. Years later we 
continue to discover regulatory features and processes that 
alter information dynamics [1]. Studies at the genomic, 
epigenomic, transcriptomic, proteomic and metabolomic 
levels have proven to interact but perhaps not in a 
unidirectional flow as once proposed [2].  

The FA signaling pathway functions to repair DNA damage, 
specifically interstrand crosslinks (ICL), a lesion that blocks 
both DNA replication and transcription [3]. This signaling 
system detects and removes ICLs with other DNA repair 
mechanisms, including nucleotide excision repair (NER) and 
homologous recombination (HR) [4] in order to maintain 
genomic stability. FANCM, a DNA translocase, creates a 

complex with MHF1 and MHF2 and recognizes the ICL as a 
result of replication fork stalling [3, 5]. The FANCM-
MHF1-MHF2 complex and PCNA recruit the FA core 
complex and FANCD2 and FANCI to chromatin, 
respectively [5]. The FA core complex, an E3 ubiquitin 
ligase, is composed of eight FA proteins (FANCA, B, C, E, 
F, G, L, M) and FA associated proteins (FAAP100, 
FAAP20, and FAAP24) and in conjunction with 
UBE2T/FANCT, an E2 ubiquitin-conjugating enzyme, adds 
ubiquitin to targets FANCD2 on  
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Lys 561 and FANCI on Lys 523. The monoubiquitination of 
the ID2 complex serves as the activation step of FA 
signaling [3]. The ubiquitinated ID2 complex allows for 
SLX4/FANCP, a scaffolding protein, to recruit DNA 
endonucleases MUS81, SLX1 and XPF/ERCC4/FANCQ, 
which generate a DNA adduct and a double-strand break. 
The double-strand break is removed by CtIP, MRN, and 
EXO1, which creates a 3’ single-stranded DNA overhang 
that is coated by replication protein A (RPA). 
RAD51/FANCR recognizes the RPA-covered single-
stranded DNA and leads to the formation of a recombination 
filament assisted by BRCA2/FANCD2, FANCN/PALB2, 
RAD51C/FANCO, BRIP1/BACH1/FANCJ, and 
XRCC1/FANCU. The recombination filament searches for a 
homologous double-stranded DNA to complete the process 
[5]. FA pathway alterations have major consequences, 
leading to disease. Biallelic germline mutations in FA genes 

results in Fanconi anemia (FA), a rare genetic syndrome 
presenting with bone marrow failure, congenital defects, and 
hypersensitivity to DNA damaging agents such as cisplatin, 
mitomycin C (MMC), and diepoxybutane [4,6]. FA is a 
DNA repair disorder. Patients have increased levels of 
oxidative DNA damage, which causes inflammation and 
contributes to premature aging [7]. FA patients are also 
predisposed to many cancers. The most common are acute 
myeloid leukemia (AML) at a 700-fold higher incidence 
than the normal population and solid tumors such as head 
and neck at a 50-fold higher incidence [8]. An impaired FA 
pathway is also found in the normal population and likewise 
associated with cancer. There are 22 known FA genes 
(FANCA/B/C/D1/D2/E/F/G/I/J/L/M/N/O/P/Q/R/S/T/U/V/W
) (Table 1).  

Table 1. FA complementation groups. Summary of 22 FA complementation groups with corresponding synonyms and 
chromosome location. 

Symbol Name Synonyms Chromosomal 
location 

FANCA FA complementation 
group A 

FACA, FANCH, FAA, 
FA-H, FAH, FA1, FAA, 

FA 

16q24.3 

FANCB FA complementation 
group B 

FAB, FAAP95, FA2, 
FAAP90, FACB 

Xp22.2 

FANCC FA complementation 
group C 

FACC, FAC, FA3 9q22.32 

BRCA2 BRCA2 DNA repair 
associated 

FANCD1, FACD, 
FANCD, FAD, FAD1, 

BRCC2, XRCC11, 
GLM3, PNCA2, 

BROVCA2 

13q12.13 

FANCD2 FA complementation 
group D2 

FACD, FANCD, FAD, 
FA-D2, FA4 

3p25.3 

FANCE FA complementation 
group E 

FAE, FACE 6p21.31 

FANCF FA complementation 
group F 

FAF 11p14.3 

FANCG FA complementation 
group G 

FAG, XRCC9 9p13.3 

FANCI FA complementation 
group I 

KIAA1794 15q26.1 

BRIP1 BRCA1 interacting 
protein C-terminal 

helicase 1 

FANCJ, BACH1, OF 17q23.2 

FANCL FA complementation 
group L 

FAAP43, PHF9, POG 2p16.1 

FANCM FA complementation 
group M 

POF15, SPGF28, 
FAAP250, KIAA1596 

14q21.2 

PALB2 Partner and localizer of 
BRCA2 

FANCN, FLJ21816, 
PNCA3 

16p12.2 

RAD51C RAD51 paralog C FANCO, RAD51L2, 17q22 
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BROVCA3, R51H3 
SLX4 SLX4 structure-specific 

endonuclease subunit 
FANCP, BTBD12, 

KIAA1987, MUS312 
16p13.3 

ERCC4 ERCC excision repair 4, 
endonuclease catalytic 

subunit 

FANCQ, RAD1, XPF, 
XFEPS, ERCC11 

16p13.12 

RAD51 RAD51 recombinase FANCR, RAD51A, 
RECA, HRAD51, 

HsRad51, HsT16930, 
BRCC5, MRMV2A 

15q15.1 

BRCA1 BRCA1 DNA repair 
associated 

FANCS, RNF53, 
BRCC1, PPP1R53, 

BRCAI, BROVCA1, 
IRIS, PNCA4, PSCP 

17q21.31 

UBE2T Ubiquitin conjugating 
enzyme E2 T 

FANCT, PIG50, 
HSPC150 

1q32.1 

XRCC2 X-ray repair cross
complementing 2

FANCU 7q36.1 

MAD2L2 mitotic arrest deficient 2 
like 2 

FANCV, MAD2B, 
REV7, POLZ2 

1p36.22 

RFWD3 ring finger WD repeat 
domain 3 

FANCW, RNF201 16q23.1 

Researchers continue to identify new FA genes. The most 
recently identified is FANCW. The E3 ubiquitin ligase 
RFWD3 functions in HR. RPA is polyubiquitinated by 
RFWD3 in response to DNA damage, which is essential for 
proper HR [9]. A compound heterozygous mutation in the 
RFWD3 gene on chromosome 16q23 led researchers to 
identify FANCW. The following mutations, 
c.205_206dupCC and c.1916T>A, were found in a 12 year
old German girl with FA. Patient cells showed an increase in
chromosomal breakage, reduced survival and cell cycle
arrest in G2 after exposure to MMC and other DNA
damaging agents. In vitro studies of the FANCW variant
indicate less relocalization to the nucleus and chromatin,
disrupted physical interaction with RPA proteins and
impaired HR compared to wild-type RFWD3 [10]. Many
have performed studies to determine the role of FA signaling
in cancer. In this review, we focus on FA signaling in cancer
and highlight its influences at all levels of biological
information flow.

DNA LEVEL: FA GENE MUTATION AND 
CANCER 

Monoallelic mutations in FA genes do not result in the FA 
phenotype; however, in line with FA patients, these 
individuals are also susceptible to multiple cancers [4, 6,  11]. 
Germline monoallelic mutations in FA genes increase risk 
for breast, ovarian and pancreatic cancer [4]. Additionally, 
analysis from The Cancer Genome Atlas (TCGA) reports 
somatic FA gene alterations are common in malignancies 
[12, 13]. Genetic changes have consequences and the 
potential to alter epigenetics, RNA, protein and metabolites.  

Next, we focus on FA pathway mutations at the DNA level 
found in human cancer. 

Biallelic germline mutations in FA genes cause classical FA. 
Interestingly, researchers have shown biallelic mutations in 
FANCM do not develop FA and therefore may be 
mistakenly identified as a FA gene [14]. BRCA1/FANCS, 
BRCA2/FANCD1 and PALB2/FANCN gene mutations are 
associated with a high risk of breast cancer [14]. Previous 
studies show FANCM monoallelic mutations are 
low/moderate risk factors; however, data on biallelic 
mutation carriers were missing. Researchers found 
individuals with FANCM biallelic mutations are predisposed 
to cancer, display chemotherapy related hematological side 
effects, develop early menopause and are positive for 
chromosome fragility [14]. Their data show biallelic 
FANCM mutations have more evident clinical consequences 
than monoallelic carriers, and FANCM is not a canonical FA 
gene. But it appears to be a key FAAP owing to its roles in 
influencing ID2 monoubiquitination.  

FANCM mutation studies have also been done in head and 
neck cancer. Researchers observed ICL-induced 
chromosomal breakage in nine of 17 head and neck 
squamous cell carcinoma (HNSCC) cell lines from patients 
without FA. They reported defective sister chromatid 
cohesion in five cell lines, and an inactivation of FANCM 
was responsible for chromosomal breakage [15]. Others 
identified gains on 16q23-24 are associated with FANCA 
amplification and correlates with reduced progression free 
survival after radiotherapy [16]. They silenced FANCA in 
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HNSCC cell lines with genomic gains on 16q23-24, which 
results in impaired clonogenic survival upon irradiation. 
When they overexpressed FANCA cell survival increased, 
DNA repair improved and chromosomal translocations were 
reduced. Sixty percent of patients have advanced stage 
HNSCC and are treated with cisplatin containing 
chemoradiation. Researchers performed a genome wide 
functional genetic screen to identify genes that influence the 
response to cisplatin in HNSCC cells [17]. Using siRNA, 
they identified the FA/BRCA pathway as the pathway for 
cisplatin response in HNSCC. Knockdown of BRCA1 and 
BRCA2 enhances cisplatin-induced cell death and SHFM1, 
a protein that interacts with BRCA2 also showed the same 
trend. Researchers found expression of these genes are 
upregulated in HNSCC cells compared to normal mucosa, 
and the expression profile of 84 genes predicts the prognosis 
of radiation and chemoradiation treated patients.  

FANCA is the most frequently mutated of the FA genes 
[18]. In prostate cancer, germline mutation S1088F in 
FANCA in addition with FANCA loss of heterozygosity 
(LOH) are deleterious for FANCA function and contributes 
to patients’ response to cisplatin [19]. The FANCA mutant 
protein disrupts FA core complex formation, enhances 
sensitivity to cisplatin and MMC and displays lower levels 
of ubiquitinated FANCD2 after treatment compared to wild 
type. When injecting mice with cells harboring the FANCA 
S1088F variant followed by Olaparib treatment, data showed 
tumors were more sensitive to Olaparib compared to vehicle 
treated. Also, in prostate cancer, the IMPACT study involves 
patients with BRCA1 and BRCA2 mutations. Their interim 
analysis shows men with BRCA2 mutations have an 
increased cancer incidence rate, diagnosed with disease at a 
younger age, and BRCA2 carriers were diagnosed with 
intermediate or high-risk prostate cancer [20]. 

FA genes have also been shown to participate in colorectal 
cancer (CRC). Researchers screened 206 patients with CRC 
for germline mutations in DNA mismatch repair (MMR) 
genes, MLH1 and MSH2, and FA genes and showed FA 
genes are silenced during disease progression and metastasis 
formation, while MLH1 and MSH2 genes are inactivated 
earlier [21]. Another group performed germline DNA whole 
exome sequencing in order to find new candidate germline 
predisposition variants for CRC. They collected samples 
from 74 patients from unrelated Spanish families and found 
enrichment for variants in FA genes- BRCA2, 
BRIP1/FANCJ, FANCC, FANCE, and REV3L/POLZ [22]. 
Similarly, a recent study shows an increase of potentially 
disruptive variants in NTHL1, BRCA2 and BRIP1/FANCJ 
in CRC [23]. 

Genomic studies have shown FA gene mutations are present 
in a variety of cancers (Table 2). Some alterations are 
associated with an increase in cancer risk and disease 
progression, which potentially disrupt other levels 

 Including whether a base is methylated or not
 Varying splice sites and miRNA binding
 Mutating the amino acid (aa) sequence leading to

changes in protein function and interaction and
lastly,

 Altering metabolites. Data from sequencing
technologies give researchers the ability to find new
targets or validate targets proven to be risk factors
for malignancy. Studies looking at specific genetic
alterations and response to therapy provide
clinicians with the knowledge to choose the best
treatment options for their patients.

Table 2. FA gene mutation and cancer. Mutated FA genes found in associated cancer types. 

Cancer Type Symbol 
AML FANCA BRAC2 FANCD2 

FANCG 
Bladder FANCG 
Breast FANCB FANCC BRAC2 

FANCD2 FANCF FANCG 
FANCI BRIP1 FANCM 
PALB2 RAD51C SLX4 
ERCC4 RAD51 BRCA1 
UBE2T XRCC2 

Cervical FANCA FANCC FANCF 
FANCL 

Colorectal FANCC BRAC2 FANCE 
BRIP1 BRCA1 

Esophageal FANCD2 FANCE FANCL 
Gastric FANCE FANCF 

Head and Neck FANCA BRAC2 FANCD2 
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FANCF FANCM BRCA1 
Leukemia FANCB FANCE FANCG 

FANCL FANCM ERCC4 
Lung FANCF 
Oral FANCA FANCC FANCD2 

FANCF FANCG 
Ovarian FANCD2 FANCF FANCG 

FANCM PALB2 RAD51 
BRCA1 RFWD3 

Pancreatic FANCA FANCC FANCG 
FANCM PALB2 

Prostate FANCA BRAC2 FANCF 
FANCG FANCI PALB2 
BRCA1 

Testicular FANCD2 BRIP1 FANCL 
RAD51C 

EPIGENETIC LEVEL: EPIGENETIC ALTERATIONS 
OF FA GENES FOUND IN CANCER 

Building on information gained from genetic studies, 
studying the FA pathway at the epigenetic level allows for a 
deeper understanding of how these genes are associated with 
cancer. Two methylation patterns known to occur in cancer 
cells are wide areas of hypomethylation and 
hypermethylation at CpG islands in gene promoters [24]. 
Hypomethylation of proto-oncogenes leading to gene 
activation or hypermethylation of tumor suppressor genes 
resulting in gene silencing have the potential to alter gene 
activity. Many are interested in studying DNA methylation 
as findings can be used to predict outcomes and treatment 
efficacy [24,25]. Next, we highlight inactivation of FA gene 
promoters by methylation found in cancer. 

One of the first to study FA gene methylation status and its 
association in cancer was D’andrea and colleagues in 2003. 
They showed methylation of BRCA1 promoter in 5-15% of 
nonfamilial ovarian cancer cases and 11-31% in nonfamilial 
breast cancers. Additionally, the FANCF promoter is 
hypermethylated in 20% of primary ovarian cancers. They 
found methylation and silencing of FANCF results in 
cisplatin sensitivity and demethylation in FANCF gene leads 
to acquired cisplatin resistance [26]. Their findings led other 
groups to perform follow up studies on FANCF methylation 
in ovarian cancer. 

Researchers noted promoter methylation was higher in more 
advanced stage disease and reported a comparable 
hypermethylated FANCF promoter frequency, at 24% [27]. 
However, others showed only one of nine cell lines and 
13.2% of samples were hypermethylated at the FANCF 
promoter in advanced ovarian cancer patients on a cisplatin 
based chemotherapy trial [28]. Likewise, another group 
looked at promoter methylation of BRCA1, MLH1 and  

FANCF and if methylation influences chemotherapy 
response or alters protein expression after chemotherapy. 
Similar frequencies of BRCA1, MLH1, and FANCF 
promoter methylation occurred in primary carcinomas 
without previous chemotherapy, after neoadjuvant 
chemotherapy or in recurrent neoplasms. However, they 
reported low BRCA1 expressionis associated with prolonged 
survival, and recurrent ovarian carcinomas have increased 
BRCA1 and/or BRCA2 protein expression after 
chemotherapy exposure [29]. 

FANCF promoter methylation has also been evaluated in 
other cancers such as cervical and breast. One group showed 
FANCF and BRCA1 are hypermethylated and FANCF 
expression is down-regulated in most cervical cancer cell 
lines. Additionally, inhibition of DNA methylation and 
histone deacetylases induces FANCF gene re-expression in 
cell lines [30]. In breast cancer, researchers evaluated ER, 
BRCA1 and FANCF promoter methylation and showed CpG 
islands of ER are methylated in 49.2% of primary breast 
cancers and are associated with high tumor grade and tumor 
subtype. However, they found FANCF methylation to be a 
rare event at 0.8% [31]. Similarly, a group from Japan also 
reported a low incidence of methylation of FANCF promoter 
region at 4% and no correlation was found between FANCF 
methylation and expression of ER, PR and HER2 in triple 
negative breast cancer (TNBC) [32]. However, BRCA1 
promoter methylation was found in 16% of TNBC and is 
associated with lymphoid vessel invasion, high nuclear 
grade, low BRCA1 mRNA expression, loss of BRCA1 
protein expression and shorter overall survival [33]. 

FA gene promoter methylation is also infrequent in bladder 
cancer and leukemia. It was shown FANCF promoter 
hypermethylation is rare in bladder cancer [34]. 
Additionally, the same group also examined FANCC and 
FANCG and were unable to detect mutations in either genes 
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in 23 bladder carcinoma cell lines and ten tumor tissues. 
They hypothesized alterations in these FA genes may occur 
as bladder carcinomas have large deletions of chromosomes 
9p and/or 9q. In leukemia, FANCC and FANCL promoter 
methylation were analyzed in 143 AML and 97 acute 
lymphoblastic leukemia (ALL) samples. FANCC promoter 
methylation was found in one AML sample and three ALL 
samples. FANCL promoter was methylated in a single ALL 
sample. Although hypermethylation of the FA genes tested 
occurs infrequently, they were able to show the 
hypermethylated samples were more sensitive towards 
MMC in a colony formation assay [35]. 

Epigenetic alterations disrupt gene expression and have the 
potential to change proteins and metabolites. These lead to 
changes in the microenvironment that alter cell functions. 
Silencing of tumor suppressors promotes errors in DNA 
repair and ultimately leads to tumorigenesis [36]. Studying 
the FA pathway at the epigenetic level has provided 
beneficial information in regards to cancer treatment. 
Methylation studies of FA gene promoters identify high-risk 
patients and predict treatment efficacy and outcomes. 
However, most studies have looked at FANCF, leaving 
much of the FA pathway or signaling network unknown 
regarding epigenetic inactivation (Table 3) [36-40]. 

Table 3. FA gene promoter methylation and cancer. 
Methylated FA gene promoters in associated cancer 

Symbol Cancer 

FANCB Head and Neck 

BRCA2 NSCLC, Ovarian 

FANCF Ovarian, Breast, Cervical, Head and Neck, 
NSCLC, Leukemia 

PALB2 Breast, NSCLC 

BRCA1 Ovarian, Breast, Gastric, NSCLC, Uterine, 
Bladder, CRC, Pancreatic 

RNA LEVEL 

Coding RNA variants and FA genes 

Pre-mRNA splicing is an essential and regulated process for 
producing mature mRNA. RNA splicing follows 5’ capping 
and 3’ cleavage or polyadenylation [41,42]. Splicing is 
carried out by the spliceosome, which recognizes exonic and 
intronic boundaries in pre-mRNA thereby removing introns 
and joining exons [42,43]. Alternative splicing allows for the 
production of multiple mature mRNAs from one gene, and 
therefore increases protein diversity, interactions and 
signaling [44]. More than 50% of human genes have 

alternative splice variants [45] and many cancer-related 
genes undergo alternative splicing or have transcriptional 
variants [42]. Here we recognize some of the FA genes with 
RNA variants. A summary can be found in (Table 4) [45-
53]. 

Our lab identified a splice variant of FANCL, FAVL. FAVL 
encodes a protein with 272 aa, 258 aa which are identical to 
FANCL. This variant has 14 unique aa and joins exon 9 to 
exon 12, skipping exons 10 and 11. FAVL protein 
expression was increased in 50% of tissue samples tested 
from osteosarcoma and lung and prostate cancer [50]. 
Further, we showed FAVL expression is high in bladder 
cancer tissues and ectopic expression of FAVL in bladder 
cancer and normal cells resulted in an impaired FA pathway 
and MMC hypersensitivity. We performed in vitro and in 
vivo studies and showed high FAVL expression promotes 
cell growth and invasiveness and is associated with 
chromosomal instability [54]. 

The center player of the FA pathway, FANCD2 is another 
gene with transcriptional variants. Our lab recognized an 
overlooked FANCD2 variant, FANCD2-V2. We identify the 
long-known form as FANCD2-V1. Both variants share 1427 
aa at their N-terminal and therefore share 95% sequence 
identity. The cDNA of FANCD2-V1 encodes 1451 aa 
whereas FANCD2-V2 encodes a 1471 aa [45]. FANCD2 has 
two polyadenylation sites (PAS), a proximal and distal. This 
allows for alternative polyadenylation (APA) to occur, 
which is an RNA processing mechanism that produces 
mRNA isoforms with different 3’ UTRs [43]. Studying 
DNA methylation at the regions of the proximal and distal 
PAS revealed high DNA methylation at the proximal PAS 
results in proximal PAS usage and FANCD2-V2 production. 
Alternatively, if there is low DNA methylation at the 
proximal PAS, distal PAS is used and FANCD2-V1 is 
produced [55]. We further showed a high methylated distal 
or methylated proximal ratio (Me-D/Me-P) is associated 
with tumor tissues in multiple cancers, including lung, 
kidney, endometrial, colon and breast. Whether RNA 
splicing is directly involved in FANCD2 mRNA variants 
needs to be determined. 

Another group identified three novel splice variants of 
RAD51C/FANCO mRNA in CRC tumors and cells. Exon 7 
is removed from variant 1, exons 6 and 7 are removed from 
variant 2 and variant 3 excludes exons 7 and 8. They found 
variant 1 is over expressed in tumors and the RAD51C 
promoter is methylated in tumor cells [51]. The same group 
identified two forms of fusion mRNAs between RAD51C 
and ATXN7 in CRC tumors. Variant 1 was previously 
identified in MCF-7 breast cancer cell line and consists of 
RAD51C exons 1-7 and ATXN7 exons 6-13 and produces a 
truncated protein. Variant 2 is a fusion of RAD51C exons 1-
6 and ATXN7 exons 6-13 and produces a 110 kDa protein 
which results in an impaired FA pathway [56]. 
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Table 4. FA RNA variants and cancer. Common FA RNA variants found in cancer. 

Symbol Variant Cancer 

FANCA FANCAins10A, FANCA∆11, FANCA∆30 
and FANCA∆31 

Non-BRCA1/2 Breast Cancer 

FANCC FANCC∆7 Leukemia, Ovarian, Breast 

FANCD2 FANCD2-V1 
FANCD2-V2 

High grade tumors 
Normal, Low grade tumors 

FANCE FANCE∆4 High risk non-BRCA1/2 Breast 
Cancer 

FANCL FAVL-skip exon 10 and 11 Bladder, Lung, 
Prostate,Osteosarcoma 

RAD51C Variant 1-skip exon 7 
Variant 2-skip exon 6 and 7 
Variant 3-skip exon 7 and 8 

RAD51C∆5 
RAD51C∆8 

CRC 

Hereditary Breast and Ovarian 
Cancer 

BRCA1 BRCA1-∆11q 
BRCA1∆15 

BRCA1∆15q 

Human cancer cell lines 
Hereditary Breast and Ovarian 

Cancer 
BRCA2 BRCA2∆2 

BRCA2∆3 
BRCA2∆5 

BRCA2∆17 
BRCA2∆25 

Hereditary Breast and Ovarian 
Cancer 

Non-coding RNA-miRNA and FA genes 

MicroRNAs (miRNAs) are small non-coding RNAs, which 
regulate gene expression. It has been shown that miRNAs 
can function as oncogenes or tumor suppressors, and 
dysregulated miRNA expression can be found in cancer 
[57]. Changes at the genetic level can alter miRNA binding. 
Perhaps losing binding where it once occurred or providing a 
target for miRNAs, which would not normally bind. The 
miRNAs are known to target FA pathway genes in tumor 
cells and we highlight those here.  

One group found miR-503 expression is decreased in 
NSCLC tissues. miR-503 targets the 3’ UTR of FANCA and 
results in decreased FANCA expression. Researchers 
suggest targeting FANCA may be a strategy for sensitization 
of NSCLC for cisplatin as these cells can be sensitized up to 
three fold when FANCA is inactivated [58]. Also, in 
NSCLC, others conducted a meta-analysis using potential 
target genes of miR-1, which are downregulated in human 
cancer. They reported miR-1 may be involved in the 
progression of lung SCC, a subtype of NSCLC, via the cell 
cycle, p53 signaling pathway, FA pathway and HR [59]. 

In myeloid malignancies, researchers detected impaired HR 
was linked to promoter methylation of BRCA1. BRCA1 
knockdown increased sensitivity to PARP inhibition, and its 
expression is inversely related to miR-155 expression. 
Increase of miR-155 is associated with PU.1 and SHIP1 

repression, which are myeloid differentiation factors [60]. 
These factors are found to be downregulated in leukemic 
transformation.  

In a pre-leukemic mouse model, researchers identified miR-
139-3p and miR-199a-3p were elevated in common myeloid
progenitors from Ercc1-deficient mice compared to control.
The miRNAs were also elevated in CD34+ bone marrow
cells from FA patients. miR139-3p inhibits proliferation of
myeloid progenitors; however, miR-199a-3p is an onco-miR
and causes AML in their mouse model. miR-199a-3p targets
include tumor suppressors PRDX6, RUNX1, and SUZ12
[61].

RNA studies provide another level of intricacy to study 
cancer. Aberrant splicing can cause many changes including, 
LOH in tumor suppressors [62] and variants translating into 
protein isoforms that promote growth and survival [63]. 
Other areas affected include apoptosis, the cell cycle, 
invasion, metastasis, angiogenesis and metabolism [63]. 
Analysis of alternative splicing changes in cancer revealed 
protein domain families are frequently mutated in tumors 
and disrupt protein-protein interactions in cancer pathways 
[64]. miRNAs targeting tumor suppressor FA pathway genes 
down regulate their expression and promote tumorigenic 
functions. We have learned changes in pre-mRNA splicing 
and miRNA are found in the FA pathway. Although this 
poses an even greater challenge, RNA variants and miRNAs 
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have therapeutic potential for cancer diagnosis and prognosis 
and provide researchers with targets [44,64]. 

PROTEIN LEVEL 

FA protein and cancer 

Studies have shown the FA pathway is highly expressed in 
cancers and therefore may serve as a therapeutic target. In 
metastatic melanoma with microphthalmia-associated 
transcription factor (MiTF), FA pathway proteins are over 
expressed. Down regulation of MiTF lowers protein 
expression of FA genes and silencing the FA pathway alters 
proliferation, migration and senescence, displaying this 
pathway as a therapeutic target for melanoma treatment [65]. 
In glioblastoma, FANCD2 protein expression is increased 
and associated with tumor grade. Primary cultures from 
grade III and IV gliomas express FANCD2 and when treated 
with Temozolomide (TMZ), FANCD2 is monoubiquitinated 
and produces nuclear foci suggesting an active FA pathway. 
Treatment of U87 cells, a glioma cell line with an intact FA 
pathway, with three FA pathway inhibitors-curcumin, EF-24 
and DDN inhibited monoubiquitination after TMZ. Results 
were replicated in primary glioma cultures. In U138 cells, a 
glioma cell line with an impaired FA pathway, endogenous 
FANCD2 was reduced, and FA pathway activation was 
abolished after TMZ [66]. Data shows inhibiting the FA 
pathway in glioblastoma sensitizes cells after chemotherapy.  

Patients often become resistant to chemotherapy. In multiple 
myeloma, NF-κB subunits, RelB/p50 activate the FA 
pathway leading to FANCD2 expression and melphalan 
resistance. Researchers found using siRNA to block NF-κB 
or bortezomib, a proteasome inhibitor, FANCD2 protein 
expression decreased, leading to melphalan sensitivity [67]. 
The standard treatment for patients with lung squamous cell 
carcinoma is a combination of platinum and gemcitabine; 
however, gemcitabine resistance determines treatment 
success. Researchers showed suppression of the FA pathway 
increased sensitivity of two lung squamous cell carcinoma 
(SCC) cell lines SK-MES-1 and KLN205 to gemcitabine. 
They found the CHK1 and FA pathways are compensatory 
in the repair of DNA damage. FANCD2 depletion in 
combination with a CHK1 inhibitor, MK-8776, potentiated 
cytotoxicity of gemcitabine; therefore, both CHK1 and FA 
pathways provide targets for the improvement of lung SCC 
therapy [68]. 

FA protein variants 

Other groups have focused on FA protein variants and 
cancer risk association. One group examined the role of 
protein truncating variants in BRCA1 interacting protein C-
terminal helices, BRIP1 (FANCJ) and breast cancer risk. 
They evaluated truncating variant p. Arg798Ter and 10 
missense variants of BRIP1 in 48,144 cases and 43,607 
controls of European origin (41 studies in the Breast Cancer 
Association Consortium). They further sequenced BRIP1 in 

13,213 cases and 5,242 controls from UK, 1,313 cases and 
1,123 controls from studies part of the breast cancer family 
registry and 1,853 familial cases and 2001 controls from 
Australia. Very few cases and controls from the European 
samples and sequencing studies were found, suggesting the 
p.Arg798Ter variant is not associated with an increase in
breast cancer risk [69]. In another large European study also
looking at breast cancer risk, researchers evaluated two
truncating variants in FANCC, p.R185X and p.R548X. They
reported the variants in 25/64,760 cases and 26/49,793
controls and therefore neither variant is associated with risk
of breast cancer. However, they detected
PALB2/FANCN*p.R414X truncating variant in 22/64,780
cases and 3/49,825 controls, which is associated with breast
cancer risk, ductal morphology, early age at diagnosis and
low differentiated tumors [70]. Identifying new FA protein
variants allows researchers to characterize the protein’s
function and mechanism, which may differ from previously
known roles. In previous studies, we showed FANCD2-V2
is a more potent tumor suppressor than the known form
FANCD2, FANCD2-V1. Our lab recently determined the
role of FANCD2-V2 in response to early DNA damage.
FANCD2-V2 responds earlier to DNA damage, via UVB
treatment, than FANCD2-V1. FANCD2-V2 is localized in
the nucleus and cytoplasm as compared to FANCD2-V1,
which is solely nuclear. We identified a binding partner of
FANCD2-V2, Trk-fused gene, TFG, which protects
FANCD2-V2 from proteasome degradation.

Interrupting binding or silencing TFG showed less FANCD2 
foci formation, increased oncogenicity and sensitivity to 
UVB and MMC treatment (Ma & Hokutan unpublished). In 
addition, another group examined the subcellular 
localization of FANCD2 in patients with ovarian cancer and 
showed nuclear and cytoplasmic localization was observed 
in normal and cancer patients. However, those with 
cytoplasmic FANCD2 have a significantly longer median 
survival time than patients without cytoplasmic FANCD2 
[71], further demonstrating FANCD2-V2 as a more potent 
tumor suppressor.  

Studies of the FA pathway at the protein level have shown 
FA proteins are overexpressed in cancers, providing 
researchers with targets for effective treatment strategies. 
Clinicians can also risk-stratify patients based on FA protein 
isoforms in cancer, such as breast. However, these 
associations no longer hold in larger studies. Further studies 
of FA protein variants and mutants are necessary to 
determine unknown functions and mechanisms involved in 
tumorigenesis. 

METABOLITE LEVEL 

The metabolome is the set of metabolites synthesized by a 
biological system [72]. Metabolomics investigates these 
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metabolites in biofluids, cells and tissues [73] and is divided 
into targeted and untargeted studies. Targeted studies 
determine the concentrations of pre-defined metabolites, 
while untargeted studies utilize a global approach [74]. 
Changes at all preceding levels of biological information 
flow occur during cancer initiation and progression, which 
alters cell metabolism. Cancer cells increase anabolic 
synthesis and adapt to less nutrients and oxygen being 
available [75]. Alternative pathways used by cells influences 
metabolites produced and therefore provides the opportunity 
to identify biomarkers for cancer diagnosis and prognosis 
and to develop targeted therapy [73-76]. 

There have been several studies examining the FA pathway 
at the metabolomic level. Our lab continued studies on the 
FANCL variant, FAVL and showed cells with an impaired 
FA pathway exhibit a metabolic signature of tumorigenesis. 
We used human bladder cancer cells, T24 and produced 
cells expressing high or low FAVL. We showed eight 
metabolites (2-oxoglutaric acid, D-pantothenic acid, L-
aspartic acid, L-methionine, L-phenylalanine, L-threonine, 
L-valine and oleic acid) resulting in increased cell
proliferation and five metabolites (L-alanine, L-methionine,
L-phenylalanine, L-tryptophan and L-threonine), which are
end products of inhibiting cell death were elevated in FAVL
high vs low cells [77]. Additionally, we studied another FA
protein, FANCC and reported FANCC provides protection
from metabolic disorders. We compared cells with different
levels of FANCC and found alterations in metabolites were
associated with aging (glycine, citrulline, ornithine, L-
asparagine, L-tyrosine, L-arginine, L-glutamine, L-leucine,
L-isoleucine, L-valine, L-proline and L-alanine), diabetes
(carbon monoxide, collagens, fatty acids, D-glucose, fumaric
acid, 2-xoxglutaric acid, and C3), inflammation (inosine, L-
arginine, L-isoleucine, L-leucine, L-lysine, L-phenylalanine,
hypoxanthine and L-methionine), and cancer (L-methionine,
sphingomyelin, acetyl-L-carnitine, L-aspartic acid, L-
glutamic acid, niacinamide, and phosphorylethanolamine)
[78].

Another group used lipidomics to study loss of FA genes in 
HNSCC. They previously showed FA gene loss stimulates 
HNSCC cells to display mesenchymal morphology and 
enhanced cell motility and invasion. HNSCC cell invasion 
was linked to plasma membrane projections, and these 
phenotypes are dependent on DNA-PK/Rac1 signaling. 
Next, they used a mass spectrometry (MS)-based lipidomics 
approach to define FA pathway-dependent lipid metabolism 
and extract lipid-based signatures and effectors of invasion 
in FA-deficient cells. They subjected FA-isogenic HNSCC 
keratinocyte cell lines to untargeted and targeted lipidomics 
analyses to discover biomarkers and targets in FA-deficient 
cells. They found an elevation of glycosphingolipids and that 
ganglioside upregulation is needed for HNSCC cell 
invasion. NB-DNJ, a glycosphingolipid biosynthesis 
inhibitor, diminished ganglioside levels and decreased 

invasion of FA deficient cancer cells. They identified a lipid 
signature is associated to FA pathway loss in HNSCC and 
glycosphingolipid synthesis inhibitors could be used to treat 
HNSCC in FA or in FA deficient tumors [79].  

Metabolomics, the newest of the “omics” disciplines, has 
provided the field with important information such as 
identifying novel predictive biomarkers and pinpointing 
pathways affected by drug therapy. Although, few studies 
regarding the FA pathway have been done, we see FA 
pathway loss alters the metabolic and lipid signature in 
bladder cancer and HNSCC cells, respectively. Continued 
metabolomics and multi-omics studies will further increase 
our understanding of FA signaling in cancer. 

CONCLUSION AND PERSPECTIVE 

The cancer field has gained much information from studying 
FA signaling. Each biological level has therapeutic potential, 
such as identifying predictive biomarkers and drug targets. 
Early diagnosis of cancer is vital and biomarkers can be used 
to identify these patients. Such examples of biomarkers in 
diagnosis include DNA mutations, RNA variants, protein 
isoforms and alterations in metabolites. Our lab identified 
the FANCD2-V1/FANCD2-V2 mRNA expression ratio is 
positively associated with tumor stages and grades. The 
methylation status of a proximal or distal promoter in 
FANCD2 promotes the production of one FANCD2 variant 
over the other. The Me-D/Me-P ratio was similarly 
associated with tumor stages and grades [55]. Both ratios 
can assist in early cancer diagnosis. Biomarkers can also be 
used to monitor disease progression. Alternatively, spliced 
variants, miRNA expression as well as metabolite changes 
can determine cancer progression.  

Studies of the FA pathway have also been beneficial in 
regards to predicting treatment response. Researchers report 
BRCA1 promoter hypermethylation predicts PARP inhibitor 
(PARPi) response in cancers. PARP1 and PARP2 are 
involved in DNA damage sensing and repair through base 
excision repair (BER), single strand break repair (SSB) and 
double strand break (DSB) repair pathways. Chronic 
lymphocytic leukemia (CLL) cells have significant defects 
in DSB repair pathways. Methylation of nine promoter 
regions of DNA repair proteins were examined in 26 CLL 
primary samples. No changes in BRCA1, BRCA2, FANCC, 
F, L, ATM, MGMT, hMLH1 and H2AX promoter 
methylation were detected, except in two cases of minor 
BRCA1 hypermethylation. However, BRCA1 mRNA 
expression was reduced in CLL samples compared to non-
malignant lymphocytes. CEP-8983, a PARPi, displayed 
cytotoxicity and in combination with bendamustine, a 
nitrogen mustard analog approved for CLL treatment, a 
synergistic effect was seen in the majority of CLL samples 
[80]. Others examined the response of high-grade serous 
ovarian carcinoma (HGSOC) to PARPi, rucaparib. They 
found variable dose-dependent responses in chemo-naïve 
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BRCA1/2 mutated patient-derived xenografts (PDX) and no 
response in PDX with without DNA repair pathway defects. 
Homozygous methylation of BRCA1 predicts rucaparib 
response, while heterozygous methylation is associated with 
resistance. They found methylation occurs after 
chemotherapy and suggest analyzing BRCA1 methylation 
pre-treatment will identify those patients that will respond to 
PARPi treatment [81]. Another group examined the 
effectiveness of the combination of a PARPi, Talazoparib, 
and a DNA methlytransferase inhibitor (DNMTi), Vidaza or 
5-AZA in NSCLC. NSCLC have abnormal DNA
methylation patterns and DNMTi can be used as a treatment
option. They reported 5-AZA and Talazoparib decreases
clonogenicity and exhibits synergistic cytotoxicity.
Additionally, H2AX foci formation and PARP1 binding to
damaged DNA increases, and RAD51 recruitment decreases.
They found DNMTi decreases the expression of DSB repair
and HR genes, creating a BRCAness phenotype. And PARPi
and DNMTi therapy sensitizes NSCLC cells to ionizing
radiation in vitro and in vivo. The same group showed this
combination therapy also enhances cytotoxicity in BRCA
proficient TNBC, AML, and ovarian cancer [82].

Researchers continue to test combination therapy to 
overcome drug resistance. Chemotherapy is the standard 
therapy for TNBC; however, patients rarely improve as drug 
resistance occurs. Researchers examined if metformin in 
combination with cisplatin would be an effective treatment 
to prevent cisplatin resistance in TNBC cells. They report 
the combination of cisplatin and metformin decreased cell 
viability, suppressed RAD51 upregulation by decreasing 
RAD51 protein stability and increased its ubiquitination. 
Further, they showed RAD51 knockdown enhances cisplatin 
activity and the combination treatment exhibits a synergistic 
anticancer effect in vivo [83].  

Progressive studies in each aspect of biological research 
witness intricate information flow, which is certainly not in a 
linear fashion, rather in a very dynamic manner that is 
coordinated with a variety of longitudes and latitudes. Each 
aspect described above is promising to substantially impact 
human cancer, in terms of understanding cancer 
pathogenesis, and improving its diagnosis and prognosis. 
Unfortunately, cancer death remains high. The huge research 
effort we made seems under-awarded. How we scientists go 
onward may need to adjust substantially towards more 
effectively dealing with cancer and other diseases? Recently, 
system biology emerges to be a field of studies that would be 
a little closer to nature, but the question is how we can 
perform/design studies that are spontaneously combining 
each micro-aspect in connecting with the natural systems. In 
this way, we would unlikely end up being a blind man who 
touches an elephant, and our research would obtain the 
actual impact as anticipated. 
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