Journal of Pharmaceutics and Drug Research

JPDR, 3(2): 341-361 www.scitcentral.com

ISSN: 2640-6152

Original Research Article: Open Access

Whole Genome Analysis and Targeted Drug Discovery Using Computational Methods and High Throughput Screening Tools for Emerged Novel Coronavirus (2019-nCoV)

Hemanth Kumar Manikyam^{1*} and Sunil K Joshi^{2*}

*1 Faculty of Science, North East Frontier Technical University, Arunachal Pradesh, India

*2Assistant Professor, Department of Paediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.

Received March 18, 2020; Accepted March 26, 2020; Published March 30, 2020

ABSTRACT

A novel coronavirus designated as SARS-CoV-2 in February 2020 by World Health organization (WHO) was identified as main cause of SARS like pneumonia cases in Wuhan city in Hubei Province of China at the end of 2019. This been recently declared as Global Pandemic by WHO. There is a global emergency to identify potential drugs to treat the SARS-CoV-2. Currently, there is no specific treatment against the new virus. There is a urgency to identifying potential antiviral agents to combat the disease is urgently needed. An effective and quick approach is to test existing antiviral drugs against. Whole genome analysis and alignment carried out using BLASTn, SMART BLAST and WebDSV 2.0 had shown more than 238 ORF's coding for proteins mostly origin from Bat SARS coronavirus and root genomic origin from Archaea. Molecular docking results against protein targets Furin, papain like proteases, RdRp and Spike glycoprotein had shown paritaprevir, ritonavir, entecavir and chloroquine derivatives are the best drugs to inhibit multi targets of coronavirus infection including natural compounds corosolic acid, baicalin and glycyrrhizic acid with minimal inhibitory concentrations. Thus we propose use of paritaprevir, entecavir, ritonavir and chloroquine derivatives as best drug combination along with niacinamide, folic acid and zinc supplements to treat novel coronavirus infection. We also propose use of plant protease inhibitors (PI's) and Anti-IL8, IL-6, IL-2 as future drug models against coronavirus.

Keywords: SARS-CoV-2, Coronavirus, Antiviral drugs, Docking tools, Ligands, Protease inhibitors, Polymerase inhibitors, BLASTn, SMART BLAST and WebDSV 2.0

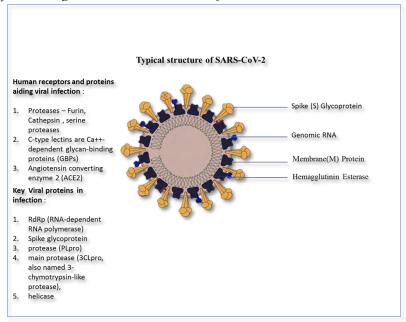
INTRODUCTION

A novel coronavirus designated as SARS-CoV-2 in February 2020 by World Health organization (WHO) was identified as main cause of SARS like pneumonia cases in Wuhan city in Hubei Province of China at the end of 2019. This been recently declared as Global Pandemic by WHO. There is a global emergency to identify potential drugs to treat the SARS-CoV-2. Currently, there is no specific treatment against the new virus. There is a urgency to identifying potential antiviral agents to combat the disease is urgently needed. An effective and quick approach is to test existing antiviral drugs against SARS-CoV-2. Spike protein recognize and bind host receptors like ACE-2 and whose conformational changes facilitates fusion of viral envelop and host membrane leading viral entry into host cells. Replication of viral RNA occurs through RNA polymerase activity by n unique mechanism. Targeting protease like Spike protein for viral entry and polymerase for replication of virus in host cell can bring effective treatment against novel SARS-CoV-2.

Coronavirus are enveloped with a positive RNA genome. Coronaviridae family of the order Nidovirales, having four genera (α , β , γ and δ). The SARS-CoV-2 seems be β genus and probable origin from bat and suspected to have an intermittent host. Structurally coronavirus contain spike (S)

Corresponding authors: Hemanth Kumar, Faculty of Science, North East Frontier Technical University, Arunachal Pradesh, India, Tel: +91-1334-234327; E-mail: phytochem2@gmail.com

Joshi, Assistant Professor, Immunology/Hemoglobinopathies, Division of Hematology/Oncology & Bone Marrow Transplantation, Department of Paediatrics, University of Miami Miller School of Medicine, Miami, FL, USA, E-mail: sunil.joshi@med.miami.edu


Citation: Manikyam HK & Joshi SK (2020) Whole Genome Analysis and Targeted Drug Discovery Using Computational Methods And High Throughput Screening Tools For Emerged Novel Coronavirus (2019nCoV). J Pharm Drug Res, 3(2): 341-361.

Copyright: ©2020 Manikyam HK & Joshi SK. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

341 J Pharm Drug Res (JPDR)

protein, envelope (E) protein, membrane (M) protein and nucleocapsid (N) protein. Viral entry through host receptor attachment promoted by spike protein leading to viral fusion to cell membrane of the host and leading to infection. Incubation period may range from 7 days to 21 days with flu like symptoms or sometimes go asymptomatic. Spike protein determines the viral entry and infection. Antiviral therapies targeting human immune system and direct coronavirus are the primary methods of treating the viral infection. Innate immunity of human immune system plays important role as primary defence mechanism against coronavirus infection and its replication. Interferon plays key role in controlling viral replication and immune presentation of viral antigens and to enhance immune responses. Viral entry and replication require human cell signal pathways, by blocking such signal pathways can bring anti-viral effect. Previously

known coronavirus infections SARS and MERS causing virus used angiotensin converting enzyme 2 (ACE2) and DPP4 human receptors of human cells independently. Targeting RNA-dependent RNA polymerase (RdRP) of coronavirus is second line of treatment itself include preventing the synthesis of viral RNA through acting on the genetic material of the virus inhibiting virus replication. Activation of the viral spike protein (S) by host cell proteases is essential for viral host cell attachment and entry and the responsible enzymes are potential therapeutic targets. The cellular proteases like furin, cathepsin and receptors like C-type lectins are Ca++-dependent glycan-binding proteins (GBPs) a functional receptor-mediated endocytosis in Golgi bodies plays important role viral infection, replication and maturation as shown in (Figure 1).

Figure 1. SARS-CoV-2 proposed viral proteins and human cell proteins aiding virus host cell entry and replication.

Different strategies for developing drugs and treatment against SARS-CoV-2 include viral protein inhibitors and human cell receptor inhibitors to be studied extensively. Some viral inhibitors like ribavirin and cyclophilin in combination with Interferon were studied to treat Pneumonia caused by Coronavirus. Using Interferons alone cannot treat the SARS-CoV-2, multi target therapy to be considered as effective way of treating which includes inhibition of receptor proteases like furins, viral proteins like spike (S) and Nsp12, a coronavirus, is an RNAdependent RNA polymerase (RdRp) protein vital enzyme for coronavirus replication/transcription complex, which can inhibit both viral host cell entry and replication. As designing of novel molecules at present is time consuming and no present therapies existing to treat SARS-CoV-2, we propose use of existing antiviral and other drugs to treat the

coronavirus infection. High-throughput screening, bioinformatics and AI based tools and methods to screen existing drug database is the fastest approach to discover drug leads against SARS-CoV-2 for example anti-retro viral drugs like Lopinavir and Ritonavir.

After determining the efficacy, the drugs can be approved through proper hospital based clinical trials for clinical treatment of patients. Viral encoding proteins and human cell proteins aiding viral host cell entry and replication were analysed by bioinformatics tools like Molecular docking and Swiss Dock protocols by conducting homology modelling and ligand preparations. SARS-CoV-2 Viral papain like protease, main protease, spike and RNA-dependent RNApolymerase (RdRp) and human furin human ACE2 and

type-II transmembrane serine protease proteins were extensively used for targeted drug discovery. Virtual screening of proposed protein targets was docked against anti-HIV and anti-Hepatitis drugs were selected as ligands from drug database including some natural phytochemicals known for antiviral properties. The present study predicts wide range of drug leads that may inhibit this study predicts a variety of compounds that may inhibit novel SARS-CoV-2 coronavirus. Validation of successful drug leads should be studies for complete efficacy using proper in-vitro and invivo methods further to continue clinical studies.

METHODS

Methods & materials

Homology genome blast and genomes information

Whole genome of SARS-CoV-2 was obtained from NBCO Nucleotide database with reference number NC 045512.2. The nucleotide sequences were aligned using BLASTn sequence aligner and similarity search analysis with SARS-CoV-2 viral genomes submitted at NCBI from different samples of infected Cluster. MN908947 (complete genome) NC 045512 (reference sequence), LC522350 (gene region coded for RdRp), LC523807 (coded for N), LC523808 (coded for N), LC523809 (coded for N), LC528232 complete, LC528233 complete, LC529905 complete, LR757995 complete, LR757996 complete, LR757997 complete, gapped, LR757998 complete, MN938384 complete, MN938385RdRP, MN938386 RdRP, MN938387 S, MN938388 S, MN938389 S, MN938390 S, MN970003 RdRP, MN970004 RdRP, MN975262 complete, MN975263 RdRP, MN975264 RdRP, MN975265RdRP [1-3].

Open reading frame finder

ORF finder searches for open reading frames (ORFs) in the DNA sequence you enter. The program returns the range of each ORF, along with its protein translation. Use ORF finder to search newly sequenced DNA for potential protein encoding segments, verify predicted protein using newly developed SMART BLAST or regular BLASTP [1,4,5].

After genome alignment, the whole genome was searched for ORF domains using SMART BLAST. Quality parameters like minimal ORF length 75 with standard genetic code having ATG and initiation codons been set.

Alignment of nucleotide and amino acid sequence analysis

Nucleotide sequence editing was conducted using WebDSV 2.0. Protein alignment was done using Clustalw and protein to DNA sequence comparison done using pairwise alignment EMBL EBI tools [6,7]. The homology model prediction was carried out through searching in RCSB database included in Fold and Function Assignment System. Prediction Binding pockets was done online

dockingserver.com. 3D structure structures are aligned by Autodock and pymol structure alignment tools.

COMPUTATIONAL METHODS

Docking calculations were carried out using Docking Server. Gasteiger partial charges were added to the ligand atoms. Non-polar hydrogen atoms were merged, and rotatable bonds were defined [8-10].

Docking calculations were carried out on selected ligands to SARS-CoV-2 main protease PDB ID 6LU7, Human furin PDB ID6HZD, PDB ID 3E9S papain like protease and PDB ID 6NUR Nsp12 of SARS virus. Essential hydrogen atoms, Kollman united atom type charges, and solvation parameters were added with the aid of Autodock tools [11]. Affinity (grid) maps of Å grid points and 0.375 Å spacing were generated using the Autogrid program [11]. Swiss protein modelling and Autodock tools are used for protein clean. Autodock parameter set- and distance-dependent dielectric functions were used in the calculation of the van der Waals and the electrostatic terms, respectively [11-13].

Docking simulations were performed using the Lamarckian genetic algorithm (LGA) and the Solis & Wets local search method [12]. Initial position, orientation and torsions of the ligand molecules were set randomly. All rotatable torsions were released during docking. Each docking experiment was derived from 100 different runs that were set to terminate after a maximum of 2500000 energy evaluations. The population size was set to 150. During the search, a translational step of 0.2 Å and quaternion and torsion steps of 5 were applied.

RESULTS

Homology genome blast and genomes information

Genetic ID MN908947 SARS-CoV-2 isolate Wuhan-Hu-1, complete genome after BLASTn similarity search had shown more similarity with many bat coronaviruses, some unknown virus and for some synthetic recombinant virus with genetic ID FJ211859.1 see **Figure 2** and **Figure 3** for whole genome and distance tree analysis. After whole genome alignment in WebDSV 2.0 tools, forward and reverse primers identified as shown in **Figure 4** and **Figure 5** both circular and linear alignments for 29903 bp.

Open reading frame finder

SMART BLAST analysis shows more than 283 open reading frames shown in supplementary file orf finder-NCBI and in **Table 1**. ORF16, ORF5, ORF8 had shown most proteins coding for mono-ADP-ribosyltransferase PARP protein families, helicases, coronavirus family proteins NSP11 and NSP13, papain like viral protease, Pfam super family proteins of orthocoronaviridae, APA3 viroporin: Coronavirus accessory protein 3a, orf3a protein of coronaviridae. ORF120 coded for BAT SARS coronavirus HKU3, HKU3-2 and HKU3-9 mainly origin from

SciTech Central Inc.

J Pharm Drug Res (JPDR)

Rhinolophus affinis an Intermediate horseshoe bat widely available in Asia. ORF238 codes for enzymes

dimethylaniline monooxygenase. All positive strand ORF's coded for Bat SARS coronavirus related proteins.

Query_14513	
NC_045512.2	Severe acute respiratory syndrome coronavirus 2
MT019531.1	Severe acute respiratory syndrome coronavirus 2
MN996528.1	Severe acute respiratory syndrome coronavirus 2
MT019532.1	Severe acute respiratory syndrome coronavirus 2
Mf019529.1	Severe acute respiratory syndrome coronavirus 2
MT049951.1	Severe acute respiratory syndrome coronavirus 2
MN988668.1	Severe acute respiratory syndrome coronavirus 2
MT019533,1	Severe acute respiratory syndrome coronavirus 2
MT118835,1	Severe acute respiratory syndrome coronavirus 2
MT106053.1	Severe acute respiratory syndrome coronavirus 2
MN994468.1	Severe acute respiratory syndrome coronavirus 2
MT039890,1	Severe acute respiratory syndrome coronavirus 2
MT027064.1	Severe acute respiratory syndrome coronavirus 2
MN975262.1	Severe acute respiratory syndrome coronavirus 2
MT123290.1	Severe acute respiratory syndrome coronavirus 2
MT027062,1	Severe acute respiratory syndrome coronavirus 2
MN985325,1	Severe acute respiratory syndrome coronavirus 2
MT019530.1	Severe acute respiratory syndrome coronavirus 2
MT123291.I	Severe acute respiratory syndrome coronavirus 2
MT106052,1	Severe acute respiratory syndrome coronavirus 2
MN997409,1	Severe acute respiratory syndrome coronavirus 2
MT039888.1	Severe acute respiratory syndrome coronavirus 2
MT039887.1	Severe acute respiratory syndrome coronavirus 2
LR757996.1	Severe acute respiratory syndrome coronavirus 2
LC52297A.1	Severe acute respiratory syndrome coronavirus 2
tC522972.1	Severe acute respiratory syndrome coronavirus 2
MN988713.1	Severe acute respiratory syndrome coronavirus 2
MT093571,1	Severe acute respiratory syndrome coronavirus 2
LR757995.1	Severe acute respiratory syndrome coronavirus 2
MT066176.1	Severe acute respiratory syndrome coronavirus 2
MT066175.1	Severe acute respiratory syndrome coronavirus 2
LC528232.1	Severe acute respiratory syndrome coronavirus 2
LC522975.1	Severe acute respiratory syndrome coronavirus 2
hC522973.1	Severe acute respiratory syndrome coronavirus 2
tC528233.1	Severe acute respiratory syndrome coronavirus 2
MT106054,1	Severe acute respiratory syndrome coronavirus 2
MT093631,1	Severe acute respiratory syndrome coronavirus 2
MT093631,1	Severe acute respiratory syndrome coronavirus 2
MT044257.1	Severe acute respiratory syndrome coronavirus 2
MN994467.2	Severe acute respiratory syndrome coronavirus 2
IR757998,1	Severe acute respiratory syndrome coronavirus 2
MT123292.1	Severe acute respiratory syndrome coronavirus 2
MT123292.1	Severe acute respiratory syndrome coronavirus 2

MT007544.1	Severe acute respiratory syndrome coronavirus 2
MT123293.1	Severe acute respiratory syndrome coronavirus 2
MT123293.1	Severe acute respiratory syndrome coronavirus 2
MT123293.1	Severe acute respiratory syndrome coronavirus 2
MN996530.1	Severe acute respiratory syndrome coronavirus 2
MN996531.1	Severe acute respiratory syndrome coronavirus 2
MN996529,1	Severe acute respiratory syndrome coronavirus 2
MT039873.1	Severe acute respiratory syndrome coronavirus 2
MN938384.1	Severe acute respiratory syndrome coronavirus 2
MN996527.1	Severe acute respiratory syndrome coronavirus 2
MT072688,1	Severe acute respiratory syndrome coronavirus 2
MT044258.1	Severe acute respiratory syndrome coronavirus 2
MN996532.1	Bat coronavirus RaTG13
MT020781.1	Severe acute respiratory syndrome coronavirus 2
MG772933.1	Bat SARS-like coronavirus
MG772934.1	Bat SARS-like coronavirus
DO412042.1	Bat SARS CoV Rf1/2004
GQ153547.1	Bat SARS coronavirus HKU3-12
KF294456,1	Bat, SARS-like coronavirus
F)Z11859,1	recombinant coronavirus
DQ084199.1	Bat SARS coronavirus HKU3-2
GQ153540,1	Bat SARS coronavirus HKU3-5
GQ153539.1	Bat SARS coronavirus HKU3-4
GQ153546.1	Bat SARS coronavirus HKU3-11
DQ022305.2	Bat SARS coronavirus HKU3-1
DQ084200.1	Bat SARS coronavirus HKU3-3
GO153548.1	Bat SARS coronavirus HKU3-13
GO153541,1	Bat SARS coronavirus HKU3-6
G0153545.1	Bat SARS coronavirus HKU3-10
G0153544.1	Bat SARS coronavirus HKU3-9
KU182964,1	Bat coronavirus
KY938558.1	Bat coronavirus
AY395003.1	SARS coronavirus ZS-C
AY394996.1	SARS coronavirus ZS-B
AY304488.1	Civet SARS CoV SZ16/2003
AY304486.1	Civet SARS CoV SZ3/2003
EU371564.1	SARS coronavirus BJ182-12
MK211376.1	Coronavirus BtRs-BetaCoV/YN2018B
MK211376.1	Coronavirus BtRs-BetaCoV/YN2018B
KY417146.1	Bat SARS-like coronavirus
IX163925.1	Severe acute respiratory syndrome-related coronavirus
EU371563.1	SARS coronavirus BJ182-8
EU371561.1	SARS coronavirus BJ182b
EU371560.1	SARS coronavirus BJ182a

KJ473816,1	BtRs-BetaCoV/YN2013			
MK211377.1	Coronavirus BtRs-BetaCoV/YN2018C			
KY417145.1	Bat SARS-like coronavirus			
MK211375,1	Coronavirus BtRs-BetaCoV/YN2018A			
KF294455.1	Bat SARS-like coronavirus			
JX993988,1	Bat coronavirus Cp/Yunnan2011			
K1473814,1	BtRs-BetaCoV/HuB2013			
DQ648857.1	Bat CoV 279/2005			
JX993987.1	Bat coronavirus Rp/Shaanxi2011			
KE294457.1	Bat SARS-like coronavirus			
MK211374,1	Coronavirus BtRI-BetaCoV/SC2018			
KI473813,1	BtRf-BetaCoV/SX2013			
KJ473812.1	BtRf-BetaCoV/HeB2013			
KJ473811.1	BtRf-BetaCoV/JL2012			
GQ153542,1	Bat SARS coronavirus HKU3-7			
GQ153543,1	Bat SARS coronavirus HKU3-8			
KY 77.0860.1	Bat coronavirus			
DQ648856.1	Bat CoV 273/2005			

Figure 2. Multiple sequence alignment viewer of distance tree of genome of SARS-CoV-2 genetic ID MN908947.3.



Figure 3. Distance tree of SARS-CoV-2 viral genome genetic ID MN908947.3 by blastn suite.

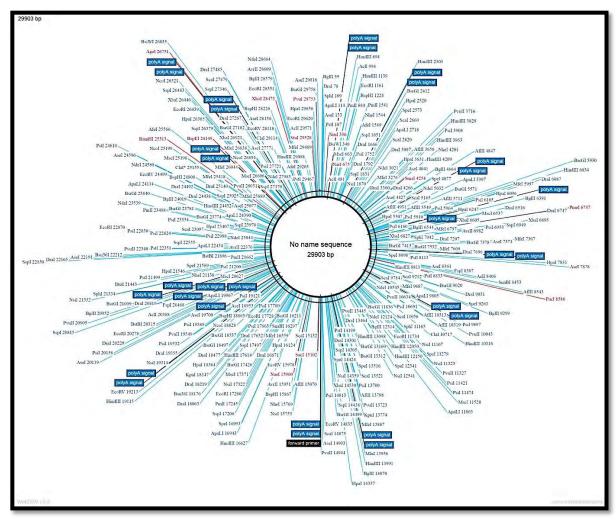


Figure 4. Circular genome-Forward primer sites in whole Genome of SARS-CoV-2.

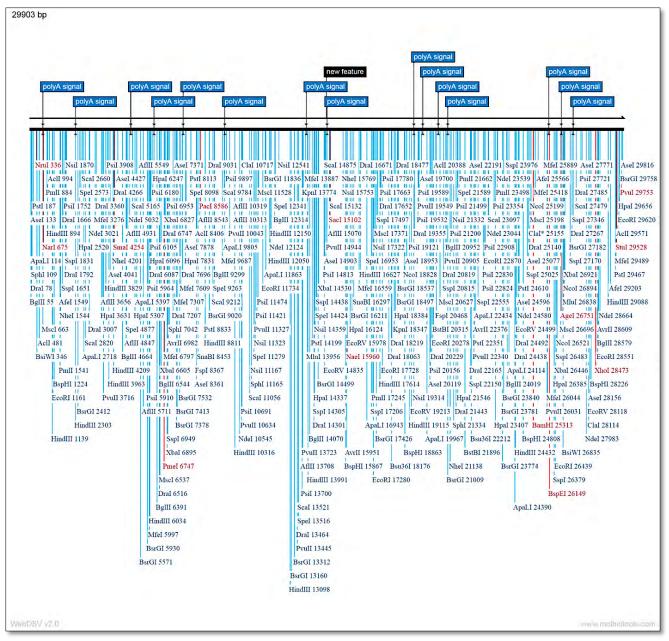


Figure 5. Linear genome-Forward primer sites in whole Genome of SARS-CoV-2.

Table 1. Open reading frames in whole genome of SARS-CoV-2.

	-			genome of SARS-	Length (nt
Label	Strand	Frame	Start	Stop	aa)
ORF16	+	2	266	13483	13218 4405
ORF5	+	1	13768	21555	7788 2595
ORF42	+	2	21521	25384	3864 1287
ORF50	+	2	28274	29533	1260 419
ORF8	+	1	25393	26220	828 275
ORF117	+	3	26499	27191	693 230
ORF215	-	2	1843	1391	453 150
ORF278	-	3	2712	2290	423 140
ORF119	+	3	27894	28259	366 121
ORF12	+	1	27394	27759	366 121
ORF214	-	2	2917	2561	357 118
ORF220	-	3	29151	28813	339 112
ORF269	-	3	6489	6187	303 100
ORF120	+	3	28278	28577	300 99
ORF180	-	2	23494	23198	297 98
ORF98	+	3	21918	22199	282 93
ORF168	-	2	29140	28862	279 92
ORF234	-	3	23349	23074	276 91
ORF229	-	3	25368	25099	270 89
ORF161	-	1	3263	3006	258 85
ORF65	+	3	2958	3206	249 82
ORF121	+	3	28710	28955	246 81
ORF238	-	3	20010	19765	246 81
ORF217	-	2	667	422	246 81
ORF233	-	3	23919	23680	240 79
ORF193	-	2	12355	12122	234 77
ORF9	+	1	26245	26472	228 75
ORF97	+	3	21639	21863	225 74
ORF173	-	2	25807	25586	222 73
ORF56	+	3	888	1097	210 69
ORF102	+	3	22884	23093	210 69
ORF88	+	3	10191	10400	210 69
ORF21	+	2	15461	15667	207 68
ORF167	-	2	29413	29207	207 68

ODE4 40			10105	15050	207160
ORF140	-	1	18185	17979	207 68
ORF257	-	3	11904	11701	204 67
ORF171	-	2	27007	26804	204 67
ORF254	-	3	12486	12283	204 67
ORF181	-	2	22111	21911	201 66
ORF128	-	1	26378	26181	198 65
ORF132	-	1	21038	20844	195 64
ORF75	+	3	6156	6350	195 64
ORF68	+	3	3912	4103	192 63
ORF150	-	1	13550	13359	192 63
ORF225	-	3	27225	27034	192 63
ORF48	+	2	26684	26872	189 62
ORF100	+	3	22539	22724	186 61
ORF205	-	2	6019	5834	186 61
ORF232	-	3	24111	23926	186 61
ORF11	+	1	27202	27387	186 61
ORF25	+	2	16616	16798	183 60
ORF282	-	3	315	133	183 60
ORF260	-	3	10995	10819	177 58
ORF126	-	1	29552	29376	177 58
ORF164	-	1	692	516	177 58
ORF252	-	3	13053	12880	174 57
ORF253	-	3	12765	12592	174 57
ORF243	-	3	18324	18151	174 57
ORF147	-	1	14486	14313	174 57
ORF115	+	3	25524	25697	174 57
ORF55	+	3	711	881	171 56
ORF261	-	3	10767	10597	171 56
ORF74	+	3	5919	6089	171 56
ORF78	+	3	7542	7709	168 55
ORF250	-	3	15159	14992	168 55
ORF108	+	3	23874	24041	168 55
ORF87	+	3	9951	10115	165 54
ORF280	-	3	1689	1528	162 53
ORF196	-	2	10384	10223	162 53
ORF59	+	3	1578	1739	162 53
ORF67	+	3	3594	3752	159 52

ORF118	+	3	27729	27887	159 52
ORF192	_	2	13273	13115	159 52
ORF231	_	3	24561	24406	156 51
ORF95	+	3	13311	13466	156 51
ORF242	-	3	18543	18388	156 51
ORF36	+	2	19148	19303	156 51
ORF178		2	24178	24023	156 51
ORF178 ORF125	-	1	29840	29685	156 51
ORF207	_	2	5641	5486	156 51
ORF207	-	3	3963	3811	153 50
ORF275 ORF265	_	3	8949	8797	153 50
ORF203 ORF237	-	3	21135	20983	153 50
	-	3	5022	4873	150 49
ORF272	-	3			150 49
ORF52	+		276	425 17122	· ·
ORF26	+	2	16973		150 49
ORF190	-	2	14059	13910	150 49
ORF40	+	2	20993	21142	150 49
ORF157	-	1	6404	6258	147 48
ORF138	-	1	19292	19146	147 48
ORF256	-	3	12078	11932	147 48
ORF155	-	1	10649	10503	147 48
ORF135	-	1	20150	20007	144 47
ORF127	-	1	28871	28728	144 47
ORF146	-	1	14651	14508	144 47
ORF191	-	2	13441	13298	144 47
ORF70	+	3	4692	4835	144 47
ORF136	-	1	19856	19713	144 47
ORF244	-	3	17994	17851	144 47
ORF186	-	2	16939	16799	141 46
ORF17	+	2	14288	14428	141 46
ORF203	-	2	7825	7688	138 45
ORF112	+	3	24606	24743	138 45
ORF174	-	2	24988	24851	138 45
ORF197	-	2	10177	10040	138 45
ORF104	+	3	23220	23357	138 45
ORF189	-	2	15703	15566	138 45
ORF4	+	1	10951	11088	138 45

ORF202	_	2	8371	8237	135 44
ORF273	-	3	4458	4324	135 44
ORF33	+	2	18392	18523	132 43
ORF222	-	3	27771	27640	132 43
ORF76	+	3	7236	7367	132 43
ORF156	-	1	7538	7407	132 43
ORF86	+	3	9201	9329	129 42
ORF23	+	2	16151	16279	129 42
ORF105	+	3	23385	23513	129 42
ORF90	+	3	12318	12443	126 41
ORF43	+	2	25457	25582	126 41
ORF177	-	2	24367	24242	126 41
ORF133	-	1	20576	20451	126 41
ORF13	+	1	28066	28191	126 41
ORF6	+	1	24688	24813	126 41
ORF109	+	3	24045	24170	126 41
ORF122	+	3	28962	29084	123 40
ORF264	-	3	9288	9166	123 40
ORF148	-	1	14027	13905	123 40
ORF245	-	3	17628	17506	123 40
ORF14	+	1	29173	29295	123 40
ORF216	-	2	1021	899	123 40
ORF83	+	3	8856	8975	120 39
ORF114	+	3	25329	25448	120 39
ORF221	-	3	28413	28297	117 38
ORF18	+	2	14636	14752	117 38
ORF107	+	3	23640	23756	117 38
ORF169	-	2	28522	28406	117 38
ORF34	+	2	18647	18763	117 38
ORF279	-	3	2046	1930	117 38
ORF51	+	2	29558	29674	117 38
ORF110	+	3	24213	24329	117 38
ORF113	+	3	24762	24875	114 37
ORF200	-	2	8785	8672	114 37
ORF71	+	3	5103	5216	114 37
ORF208	-	2	5011	4901	111 36
ORF1	+	1	5803	5913	111 36

ORF142	-	1	17276	17166	111 36
ORF266	-	3	8754	8644	111 36
ORF45	+	2	26060	26170	111 36
ORF111	+	3	24330	24440	111 36
ORF28	+	2	17606	17716	111 36
ORF24	+	2	16493	16603	111 36
ORF54	+	3	576	686	111 36
ORF277	-	3	2949	2842	108 35
ORF153	-	1	12083	11976	108 35
ORF123	+	3	29160	29267	108 35
ORF124	+	3	29343	29450	108 35
ORF139	-	1	18578	18471	108 35
ORF159	-	1	4298	4191	108 35
ORF211	-	2	3466	3359	108 35
ORF210	-	2	3685	3578	108 35
ORF62	+	3	2208	2312	105 34
ORF204	-	2	7336	7232	105 34
ORF81	+	3	7998	8102	105 34
ORF267	-	3	8148	8044	105 34
ORF85	+	3	9090	9194	105 34
ORF201	-	2	8581	8477	105 34
ORF92	+	3	12669	12773	105 34
ORF184	-	2	17377	17273	105 34
ORF271	-	3	5577	5473	105 34
ORF106	+	3	23520	23624	105 34
ORF31	+	2	18086	18187	102 33
ORF53	+	3	432	533	102 33
ORF281	-	3	1110	1009	102 33
ORF224	-	3	27456	27355	102 33
ORF61	+	3	1866	1967	102 33
ORF63	+	3	2583	2684	102 33
ORF57	+	3	1128	1229	102 33
ORF255	-	3	12255	12154	102 33
ORF84	+	3	8982	9083	102 33
ORF240	-	3	18978	18877	102 33
ORF219	-	3	29511	29410	102 33
ORF152	-	1	13058	12957	102 33

ORF154	_	1	10856	10755	102 33
ORF116	+	3	25968	26069	102 33
ORF195	_	2	11596	11498	99 32
ORF283	-	3	108	10	99 32
ORF274	_	3	4236	4138	99 32
ORF235	-	3	22599	22501	99 32
ORF236	_	3	21372	21274	99 32
ORF199	-	2	9493	9395	99 32
ORF239	-	3	19101	19003	99 32
ORF268	-	3	7419	7321	99 32
ORF248	-	3	15888	15790	99 32
ORF263	-	3	10371	10273	99 32
ORF39	+	2	20165	20263	99 32
ORF187	-	2	16306	16208	99 32
ORF158	-	1	5546	5448	99 32
ORF141	-	1	17543	17445	99 32
ORF46	+	2	26183	26281	99 32
ORF10	+	1	26812	26910	99 32
ORF131	-	1	21551	21453	99 32
ORF47	+	2	26456	26554	99 32
ORF143	-	1	16295	16200	96 31
ORF213	-	2	3190	3095	96 31
ORF212	-	2	3298	3203	96 31
ORF276	-	3	3450	3355	96 31
ORF103	+	3	23106	23201	96 31
ORF259	-	3	11154	11059	96 31
ORF179	-	2	23632	23537	96 31
ORF66	+	3	3207	3302	96 31
ORF246	-	3	17106	17011	96 31
ORF194	-	2	11842	11747	96 31
ORF91	+	3	12480	12572	93 30
ORF228	-	3	25602	25510	93 30
ORF72	+	3	5565	5657	93 30
ORF44	+	2	25892	25984	93 30
ORF77	+	3	7377	7469	93 30
ORF188	-	2	15991	15899	93 30
ORF160	-	1	3830	3738	93 30

_					
ORF7	+	1	25195	25287	93 30
ORF163	-	1	1904	1812	93 30
ORF270	-	3	6072	5980	93 30
ORF19	+	2	14765	14857	93 30
ORF206	-	2	5779	5687	93 30
ORF172	-	2	26536	26447	90 29
ORF249	-	3	15696	15607	90 29
ORF185	-	2	17200	17111	90 29
ORF80	+	3	7893	7982	90 29
ORF251	-	3	14367	14278	90 29
ORF176	-	2	24595	24506	90 29
ORF101	+	3	22776	22865	90 29
ORF129	-	1	25454	25365	90 29
ORF134	-	1	20438	20349	90 29
ORF227	-	3	26127	26038	90 29
ORF170	-	2	28105	28016	90 29
ORF175	-	2	24811	24725	87 28
ORF60	+	3	1770	1856	87 28
ORF22	+	2	15812	15898	87 28
ORF247	-	3	16818	16732	87 28
ORF183	-	2	17854	17768	87 28
ORF30	+	2	17966	18052	87 28
ORF144	-	1	15617	15531	87 28
ORF73	+	3	5697	5783	87 28
ORF35	+	2	18764	18847	84 27
ORF2	+	1	8815	8898	84 27
ORF32	+	2	18284	18367	84 27
ORF41	+	2	21317	21400	84 27
ORF58	+	3	1476	1559	84 27
ORF258	-	3	11577	11494	84 27
ORF151	-	1	13277	13194	84 27
ORF165	-	1	227	144	84 27
ORF182	-	2	18703	18620	84 27
ORF94	+	3	13005	13088	84 27
ORF166	-	2	29500	29417	84 27
ORF145	-	1	15143	15060	84 27
ORF130	-	1	22352	22269	84 27

ORF223	-	3	27621	27538	84 27
ORF137	-	1	19700	19617	84 27
ORF82	+	3	8745	8825	81 26
ORF162	-	1	2561	2481	81 26
ORF27	+	2	17393	17473	81 26
ORF29	+	2	17831	17911	81 26
ORF149	-	1	13631	13551	81 26
ORF226	-	3	26226	26146	81 26
ORF262	-	3	10509	10429	81 26
ORF49	+	2	27875	27955	81 26
ORF99	+	3	22314	22394	81 26
ORF79	+	3	7758	7838	81 26
ORF69	+	3	4350	4430	81 26
ORF89	+	3	12126	12206	81 26
ORF15	+	2	59	136	78 25
ORF209	-	2	4408	4331	78 25
ORF20	+	2	14858	14935	78 25
ORF3	+	1	9541	9618	78 25
ORF198	-	2	9964	9887	78 25
ORF218	-	2	310	233	78 25
ORF37	+	2	19550	19627	78 25
ORF38	+	2	19664	19741	78 25
ORF230	-	3	24966	24889	78 25
ORF96	+	3	21117	21194	78 25
ORF93	+	3	12864	12941	78 25
ORF64	+	3	2793	2870	78 25
ORF241	-	3	18777	18700	78 25

Docking results

Selected paritaprevir, entecavir, ergotamine tartrate, telaprevir, dihydroergotamine, simeprevir, ergotamine alkaloid, telmisartan, ritonavir tartrate, fgi 106, corosolic acid, chloroquine, darunavir, nelfinavir, glycyrrhizic acid, baicalin, ritonavir, quilajja saponin, lopinavir, amprenavir, fosamprenavir, quercetin, remdesivir, pemetrexed, raltitrexed, sofosbuvir were docked against proteins SARS-CoV-2 main protease PDB ID 6LU7, Human furinPDB ID6HZD, PDB ID 3E9S papain like protease and PDB ID 6NUR Nsp12 (RdRp) in selective manner as mentioned in (Tables 2, 3 and 4).

Table 2. Identified potential drug leads against protease and replication polymerase novel corona virus targets.

		Target Viral	ΔG (Free Energy of	Inhibition Constant
S. No	Drug name	Protein	Binding) kcal/mol	Ki
1.	Paritaprevir	Proteases	-9.32	147.06 nM
2.	Ergotamine tartrate	Proteases	-9.23	171.72 nM
3.	Telaprevir	Proteases	-8.98	260.28 nM
4.	Dihydroergotamine	Proteases	-8.96	270.32 nM
5.	Simeprevir	Proteases	-8.61	489.77 nM
6.	Ergotamine alkaloid	Proteases	-8.54	1.85 uM
7.	Telmisartan	Proteases	-7.36	4.03 uM
8.	Ritonavir tartrate	Proteases	-7.30	4.48 uM
9.	FGI 106	Proteases	-7.14	5.82 uM
10.	Corosolic acid	Proteases	-7.09	6.33 uM
11.	Chloroquine	Proteases	-6.96	7.94 uM
12.	Darunavir	Proteases	-6.94	8.15 uM
13.	Nelfinavir	Proteases	-6.79	10.55 uM
14.	Glycyrrhizic acid	Proteases	-6.75	11.26 uM
15.	Baicalin	Proteases	-6.58	15.00 uM
16.	Ritonavir	Proteases	-6.39	20.64 uM
17.	quilajja saponin	Proteases	-6.16	30.59 uM
18.	Lopinavir	Proteases	-5.92	45.67 uM
19.	Amprenavir	Proteases	-5.82	54.06 uM
20.	Fosamprenavir	Proteases	-4.94	240.42 uM
21.	Quercetin	Proteases	-4.74	338.05 uM
22.	Remdesivir	Proteases	-4.53	475.88 uM
23.	Pemetrexed	RdRp (viral	-6.49	17.54 uM
23.	Temetroxed	Replication)	0.17	17.54 (141
24.	Raltitrexed	RdRp (viral	-6.71	12.08 uM
	- COLUMN OR CO	Replication)	0.71	12.00 4111
25.	Sofosbuvir	RdRp (viral	-5.40	30.89 uM
		Replication)		

Table 3. Identified potential drug leads against human furin proteases for novel corona virus targets.

S. No.	Drug Name	Target Protein	ΔG (Free Energy of Binding) kcal/mol	Inhibition Constant Ki
1.	Chloroquine	Furin	-8.61 kcal/mol	487.42 nM
2.	Baicalin	Furin	-7.40 kcal/mol	3.75 uM
3.	Corosolic acid	Furin	-7.67 kcal/mol	2.41 uM
4.	Glycyrrhizic acid	Furin	-5.84 kcal/mol	52.76 uM (mild inhibitor)
5.	Paritaprevir	Furin	-10.02 kcal/mol	45.27 nM(strong inhibitor)
6.	Ritonavir	Furin	-7.91 kcal/mol	1.58 uM
7.	Remdesivir	Furin	-4.81 kcal/mol	300.08 uM

Table 4. Identified potential drug leads against papain like proteases of novel corona virus targets.

S. No	Drug Name	Target Protein	ΔG (Free Energy of Binding) kcal/mol	Inhibition Constant Ki
1.	Paritaprevir	papain like proteases	-7.09 kcal/mol	6.40 uM
2.	Lopinavir	papain like proteases	-4.25 kcal/mol	772.95 uM (weak inhibitor)
3.	Ritonavir	papain like proteases	-4.73 kcal/mol	339.64 uM
4.	Chloroquine	papain like proteases	-7.28 kcal/mol	4.61 uM
5.	Remdesivir	papain like proteases	-5.66 kcal/mol	70.56 uM (weal inhibition)

Paritaprevir, chloroquine and ritonavir had shown strong multi target inhibition like spike proteins, proteases and furin. Natural compounds like baicalin, corosolic acid had shown multi target inhibition properties against spike proteins, proteases and furin.

DISCUSSION

At present world is facing pandemic situation because of SARS-CoV-2 infection. There is an urgency to address this situation as no present treatment protocols are not been established. The only way to develop quick treatment protocols can be achieved by studying detailed case studies of SARS infections caused by influenza and non-influenza viruses and also studying existing antiviral drugs.

Computational and high throughput screening tools are the best aids to design and study the efficacy of existing antiviral drugs along with some anti-inflammatory drugs against SARS-CoV-2 targeted sites. Antiviral drugs like oseltamivir used against neuraminidase of SARS in last decade, favilavir an RNA-Dependent RNA polymerase (RdRp) inhibitor also showed effective against the SARS influenza virus. Recently Japan also proposed use of favipiravir and Avian flu drug to treat SARS-CoV-2 infection. Remdesivir a proposed drug to treat Ebola virus also been proposed to test against SARS-CoV-2. DNA and RNA inhibitors like sofosbuvir and anti-HIV drug compositions also been proposed at present to treat the present global pandemic caused by novel coronavirus. Most

of the proposed drugs had shown either less efficacy or effective in some patients but not achieved complete success. In order to develop complete treatment protocol, one should understand the disease pathogenesis. As per case reports available study indicates respiratory outburst due to various inflammatory study indicates severe diarrhoea and respiratory outburst due to inflammatory factors causing death among novel coronavirus infected patients. As per our study we found CD4+ activation leading to TH1 and TH2 cytokines outburst in excessive leading to severe respiratory illness in patients affected by SARS-CoV-2. This virus has Orf zone indicating C lectin type binding receptors of host (Figure 4, 5 and 6) which may make this virus to escape MHC Class I antigen presentation leading to asymptomatic

conditions in some patients. Interleukins like IL6, IL8 and IL2 along with TNF α might be main causative inflammatory leading respiratory failure. Based on available case study by [14] most of the patients admitted had shown difficulty in breathing, cough and fever with severe respiratory illness and pneumonia. In this study we propose use of multi target therapy which includes viral protein targets involving in host cell entry and replication and host cytokines. Viral proteins like spike, neuraminidase, main protease (3CLpro), papain like protease (PLpro) and RNA-Dependent RNA polymerase (RdRp) are the key viral protein targets [2]. Inhibition of spike (S) protein binding to ACE 2 will be key prophylactic drug discovery to control SARS-CoV-2.

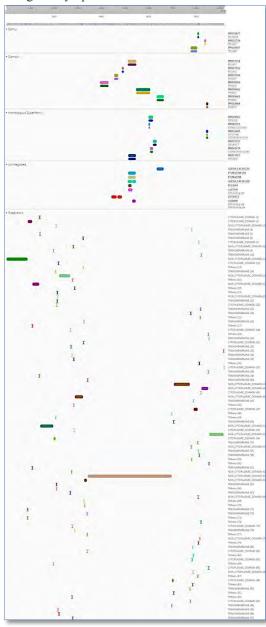
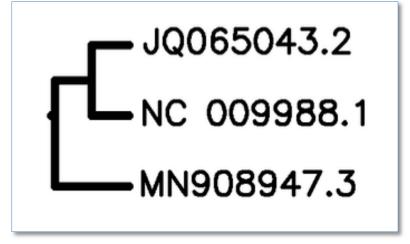



Figure 6. ProrVista tool analysis of ORF reads of SARS-CoV-2.

CONCLUSION

The present used carried out using computational and high throughput screening tools in order to evaluate the whole Genome analysis of SARS-CoV-2 and identifying potential drugs to treat novel coronavirus influenza. Gene sequence was obtained from NCBI genome database [15,3] and Molbiol and other BLAST analysis tools were used to analyse genome wide study. Similarity search analysis had shown possible close species relation with BAT SARS Corona virus particularly from Intermediate horseshoe bat (Rhinolophus affinis) and some Beta Coronaviridae family. The data also suggest some possible cross species interaction of Delta coronavirus families and species jump from bats to intermediate host which is unknown or from porcine origin. VISTA Tools for Comparative Genomics had shown some phylogenetic origin of SARS-CoV-2 by chimeric recombination between HKU2 alpha Coronaviridae which caused severe Swine diarrhoea syndrome caused by Bat droppings and HKU15 a delta corona virus causing swine respiratory syndrome (Figure 7). Some genome wide analysis also matches with Recombination Clone of SARS Coronavirus with genetic ID FJ211859.1 which should be properly evaluated as future indication. Orf reading had shown more than main 238 Orf sites SARS coronavirus Orf3/3a (Figure 6) which is a characteristic protein for SARS Coronavirus family. Some other proteins include NS3/E, small non-structural proteins, well conserved among Coronavirus strains and a small uncharacteristic protein SARS NS6 with small amino acid sequence. Drugs selected from zinc database like remdesivir, paritaprevir, sofosbuvir, chloroquine ritonavir. lopinavir, derivatives hydroxychloroquine including natural molecules like glycyrrhizin, corosolic acid and baicalin were used as ligands in docking studies against viral proteins like spike, main protease (3CLpro). Papain like protease (PLpro), RNA dependent RNA polymerase. Docking results had shown paritaprevir, ritonavir and chloroquine derivatives as best drug leads against spike and proteases of SARS-Co-V2. Natural drugs like glycyrrhizin, corosolic acid and baicalin also shown strong binding affinity against spike and protease proteins of novel corona virus. From existing clinical data, we also propose use of anti-inflammatory drugs in treating the SARS-CoV-2 disease progression. In this study we propose for clinical study by combined use of paritaprevir, entecavir, ritonavir, and hydroxychloroquine along with anti-inflammatory drugs and also use of niacinamide, vitamin C, zinc supplements for possible good clinical outcome. We also propose study plant protease inhibitors (PI's), glycoprotein-based antibodies and small molecules like Lysozyme hydrochloride , Oxamniquine and Nateglinide therapies.

Figure 7. VISTA GENOME TOOL COMPRATIVE ANALYSIS-JQ065043.2–HKU2 swine corona virus, NC 009988.1 HKU15 SARS coronavirus from horseshoe bats (Rhinolophus) & MN908947.3 SARS-CoV-2.

ACKNOWLEDGEMENT

The research is supported with 1 R21 AI133246-01 (Scored Grant), NIH-P40: 2 P40 OD 010988-16, NIH-U19: AI062629.

REFERENCES

- U.S. National Library of Medicine (2020) Smart Blast. Available online at: https://blast.ncbi.nlm.nih.gov/smartblast/smartBlast.cgi# alnHdr QIC50514
- 2. Wu C, Liu Y, Yang. Y, Zhang P, Zhong W, et al. (2020) Analysis of therapeutic targets for SARS-CoV-2 and
- discovery of potential drugs by computational methods. Acta Pharmaceutica Sinica B.
- 3. National Centre for Biotechnology Information (2020) GenBank. Available online at: https://www.ncbi.nlm.nih.gov/genbank/sars-cov-2-seqs/

- National Centre for Biotechnology Information (2020)
 Open Reading Frame Finder. Available online at: https://www.ncbi.nlm.nih.gov/orffinder/
- 5. VISTA (2020) Tools for Comparative Genomics. Available online at: http://genome.lbl.gov/vista/index.shtml
- 6. WebDSV (2020) Available online at: http://www.molbiotools.com/WebDSV/
- 7. National Centre for Biotechnology Information (2020) Constraint based Multiple Assessment Tool. Available online at: https://www.ncbi.nlm.nih.gov/tools/cobalt/
- 8. Bikadi Z, Hazai E (2009) Application of the PM6 semiempirical method to modelling proteins enhances docking accuracy of Auto Dock. J Cheminform 1: 1-15.
- TA Halgren (1998) Merck molecular force field. I. Basis, form, scope, parametrization, and performance of MMFF94. J Comput Chem 17: 490-519.
- 10. Molecular Docking Server (2020) Available online at: https://dockingserver.com/web/docking/
- 11. Morris GM, Goodsell DS (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19: 1639-1662.
- 12. Solis FJ, RJB (1981) Wets Minimization by Random Search Techniques. Math Oper Res 6: 19-30.
- 13. Swiss-Model (2020) Available online at: https://swissmodel.expasy.org/
- 14. Guan W, Ni Z, Yu Hu, Liang W, Ou C, et al. (2020) For the China medical treatment expert group for Covid-19*. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med, February 28, 2020.
- 15. Wu F, Zhao S, Yu B, ChenYM, Wang W, et al. (2020) A new coronavirus associated with human respiratory disease in China. Submitted (05-JAN-2020) Shanghai Public Health Clinical Center & School of Public Health, Fudan University, Shanghai, China on Jan 17, this sequence version replaced MN908947.2. https://www.ncbi.nlm.nih.gov/nuccore/MN908947.