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ABSTRACT 

This work deals with the problem of the optimization of multiproduct batch plant design (MBPD) found in a chemical 

engineering process. The aim of this work is to minimize the investment cost and find out the number and size of parallel 

equipment units in each stage. For this purpose, it is proposed to solve the problem in two different ways: The first way is by 

using route-packing-based (RPBB) and the second way is by seed-based (SeedBB). This paper presents the effectiveness and 

performance comparison of RPBB and SeedBB for optimal design of multiproduct batch plant. The calculation results 

(investment cost, number and size of equipment, computational time, CPU time and idle times in plant) obtained by RPBB 

are better than SeedBB. This approach can facilitate the manufacturers of pharmaceutical drug to get an optimal design and 

makes up a remarkably suggested plan for having a benefit of efficient results. 

Keywords: Mathematical modeling, Chemical engineering optimization, Route-packing-based algorithm, Seed-based 

algorithm, Batch plant design 

INTRODUCTION 

Pharmaceutical researchers and biotechnology companies 

are devoted to developing medicines, such as: Therapeutic 

proteins, human insulin, vaccines for hepatitis, food grade 

protein, chymosin detergent enzyme and cryophilic protease. 

This allows patients to live longer, heathier and more 

productive. However, in recent years, there has been an 

increased interest development of systematic method for the 

design of batch process in chemicals, food products and 

pharmaceutical industries. Basically, batch plants are 

composed of items operating in a discontinuous way, where 

each batch then visits a fixed number of equipment items, as 

required by a given synthesis sequence so called production 

recipe. Many works in the literature on batch process design 

are based on expressions that relate the batch sizes linearly 

with the equipment sizes [1-10]. The number required of 

volume and size of parallel equipment units in each stage is 

to be determined. Nevertheless, the design of batch plants 

requires involving how equipment may be utilized. However 

you look at it the optimal design of a multiproduct batch 

chemical process involves the production requirement of 

each product and the total production time available for all 

products has been considered. The number and size of 

parallel equipment units in each stage as well as the location 

and size of intermediate storage are to be determined in 

order to minimize the investment cost. 

This paper proposes a solution to the optimal design of 

multiproduct batch plant design for protein production 

(MBPD). An integrated model was developed proposing two 

relevant heuristics to solve the MBPD’s problem: route-

packing-based-batch (RPBB) and seed-based-batch 

(SeedBB). The proposed heuristics are best for handling 

MBPD’s enormous problem size with a large number of 

equipments. 

We have found out that SeedBB performed effectively and 

gave a solution, but we would like to solve the problem 

more effectively, that’s why we proposed to apply RPBB, an 

intelligent problem-solving method that has demonstrated its 

effectiveness in solving combinatorial optimization problem 

and satisfactory results have been obtained. 

MATERIALS & METHODS 

System description and experimental data 

The case study, taken from the literature, is a multiproduct 
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batch plant for the production of proteins [11]. This example 

is used as a test bench since it provides models describing 

the unit operations involved in the process. The batch plant 

involves eight stages for producing four recombinant 

proteins, on one hand, two therapeutic proteins, human 

insulin (A) and vaccine for hepatitis (B) and, on the other 

hand, a food grade protein, chymosin (C) and a detergent 

enzyme, cryophilic protease (D). Figure 1 is the flowsheet 

of the multiproduct batch plant considered in this study. All 

the proteins are produced as cells grow in the fermenter. It is 

hardly necessary to say that the number of intermediate 

storage tanks is an important constituent of our process: 

Three tanks have been selected: The first after the fermenter, 

the second after the first ultrafilter and the third after the 

second ultrafilter. 

Vaccines and protease are considered to be intracellular. The 

first microfilter is used to concentrate the cell suspension, 

which is then sent to the homogenizer for the second 

microfilter, which is used to remove the cell debris from the 

solution proteins. The first ultrafiltration step is designed to 

concentrate the solution in order to minimize the extractor 

volume. In the liquid-liquid extractor, salt concentration 

(NaCl) is used as solution in order to minimize the extractor 

volume. In the liquid-liquid extractor, salt concentration 

(NaCl) is used to first drive the product to a poly-ethylene-

glycol (PEG) phase and again into an aqueous saline 

solution in the back extraction. The second ultrafiltration is 

used again to concentrate the solution. The last stage is 

chromatography, during which selective binding is used to 

better separate the product of interest from the other 

proteins. 

Insulin and chymosin are extracellular products. Proteins are 

separated from the cells in the first microfilter, where cells 

and some of the supernatant liquid stay behind to reduce the 

amount of valuable products lost in the retentate, extra water 

is added to the cell suspension. The homogenizer and the 

second microfilter for cell debris removal are not used when 

the product is extracellular. Nevertheless, the first ultrafilter 

is necessary to concentrate the dilute solution prior to 

extraction. The final step of extraction, second ultrafiltration 

and chromatography are common to both the extracellular 

and intracellular products. In Table 1, we make an 

estimation of production targets and product prices [12-14]. 

Figure 1. Multiproduct batch plant for protein production. 

Table 1. Product prices and demands. 

Product Name 
Production 

(kg/year) 
Price (dollar/kg) 

1 Insulin 1500 8000 

2 Vaccine 1000 7500 

3 Chymosin 3000 1000 

4 Protease 6000 500 
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Problem statement 

The model formulation for DMBP’s problem approach 

adopted in this section is based on Montagna et al. [15]. It 

considers not only treatment in batch steps, which usually 

appear in all types of formulation, but also represents semi 

continuous units that are part of the whole process (pumps, 

heat exchangers, etc.). A semi-continuous unit is defined as 

a continuous unit alternating idle times and normal activity 

periods. Besides, this formulation takes into account mid-

term intermediate storage tanks, the obligatory mass balance 

at the intermediate storage stage, which is one of the most 

efficient strategies to decouple bottlenecks in batch plant 

design. They are just used to divide the whole process into 

subprocesses in order to store an amount of materials 

corresponding to the difference of each sub-process 

productivity. In this section we describe the unit models 

from a conceptual standpoint and also the procedure to 

derive the data needed for solving the mathematical model. 

These data are summarized in Tables 2 and 3. 

Table 2. Size factors Sij (r, retentate; p, permeate). 

Stage (j) 
Sij=m

3
/kg

Unit Insulin Vaccine Chymosin Protease 

1 Fermenter 1.25 0.625 0.415 0.3125 

2 Microfilter I r: 1.25 r: 0.625 r: 0.415 r: 0.3125 

p: 2.5 p:no p: 0.830 p: no 

3 Homogenizer 
No 0.155 No 0.08 

4 Microfilter II 
No 

r: 0.155 No r: 0.08 

p: 0.31 p: 0.16 

5 Ultrafilter I 
2.5 0.31 0.83 0.16 

6 Extractor 0.4 0.2 0.14 0.1 

7 Ultrafilter II 
0.4 0.2 0.14 0.1 

8 Chromatographer 
0.05 0.05 0.05 0.05 

Table 3. Time factors Tij [Bi(kg)]. 

Stage 
Unit 

Tij (h) 

j Insulin Vaccine Chymosine Protease 

1 Fermentor 24 24 24 24 

2 Microfilter I 12.5 A-1Bi 2.5 A-1Bi 4.15 A-1Bi 1.25 A-1Bi 

3 Homogeneizer no 0.465 cap-1Bi no 0.24 cap-1Bi 

4 Microfilter II no 3.1 A-1Bi no 1.6 A-1Bi 

5 Ultrafilter I 105A-1Bi 5.5 A-1Bi 35 A-1Bi 3 A-1Bi 

6 Extractor 1.5 1.5 1.5 1.5 

7 Ultrafilter II 18A-1Bi 8 A-1Bi 4.75 A-1Bi 3 A-1Bi 

8 Chromatographer 0.5 0.5 0.5 0.5 
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Most of the separation processes information are taken from 

Asenjo and Patrick [16], the posynomial modeling approach 

is taken from Salomone and Iribarren [17]. The general 

batch process literature [18], describes batch stages  through 

a sizing equation and a cycle time that are applied for a 

product as follows: 

iijj BSV  (1)

where Vj is the size of stage j, e.g., m3 of the vessel, Bi is the

batch size for product i , e.g., kg of product exiting from the 

last stage, Sij is the size factor of stage j product i, i.e., the 

size needed at stage j to produce 1 kg of final product i and 

Tij is the time required to process a batch of product i in 

stage j considering the fermentor and the insulin product as 

an example. If we estimate a final concentration of 50 kg dry 

biomass/m3 that 0.4 of this biomass is proteins and 0.05 of 

these proteins is insulin, and an overall yield estimate of the 

process of 0.8 (0.8 of the insulin produced in the fermenter 

exits the chromatographic column), then the size factor for 

the fermenter for producing insulin can be estimate as 

3
3

25.1
8.005.04.050

m
kg

m
Sij 


  (2) 

Similarly, vaccine, chymosine and cryophilic protease were 

estimated to be 0.1, 0.15 and 0.2 of total proteins of the 

biomass, respectively. The batch stage description is 

completed by estimating a processing time Tij

 
for stage j

 
when producing product i. For the fermenter, we estimate 

Tij=24 h for all products, which includes time for charging, 

cell growth, and discharging. 

This model of batch stages given by constraint (1a) is the 

simplest one. Its level of detail suffices for the fermenter and 

the extractor. These units are truly batch items chat hold the 

load to be processed and whose operations are governed by 

kinetics and hence, the operating time does not depend on 

the batch size. The first approximation for the extractor, we 

take a phase ratio of (1b) for all products. Therefore, the 

required extractor volume is twice the inlet batch volume, 

while the inlet and outlet aqueous saline batches are of the 

same volume. It is also assumed, as a result of preliminary 

balances, that this operation reduces the total amount of 

proteins to about twice the amount of the target protein. with 

respect to the kinetic effects we take as first estimates [19] 

the following times: 15 min stirring to approach phase 

equilibrium, 30 min settling to get almost complete 

disengaging of the phases and 20 min for charging and 

discharging. A special consideration must be done in the 

case of the microfiltration, homogenization and 

ultrafiltration stages. Although the mathematical model 

considers them batch stages, their corresponding equipment 

consists of holding vessels and semicontinous units that 

operate on the material that is recirculated into the holding 

vessel. The batch items are sized as described before. For 

example, for the homogenizer processing cryophilic 

protease, we estimated that the fermentor broth is 

concentrated 4 times up to 200 kg/m3 at microfilter 1 and 

considered a yield of 1 because the intracellular protease is 

fully retained at the microfilter. Then the size factor of the 

homogenizer vessel is 4 times smaller than the fermenters, 

i.e. Sij=0.08 m3/kg protease. The sizing equation for

semicontinuous items can also be found in the general batch

processes literature [20]:

ij

i
ijj

B
DR


 (3)

where Rj is the size of the semicontinuous item k, usually a 

rate of processing. For example, in the case of the 

homogenizer, it is the capacity in cubic meters of suspension 

per hour, but in the case of the filters Rj is their area of 

filtration Aj (m3). Bi is again the batch size, θij is the

operating time that the semicontinuous item j needs to 

process a batch of product i and Dij is the duty factor (a size 

factor for semicontinuous items), i.e., the size needed at 

stage j to process 1 kg of product i in 1 h. For example, if we 

adopt three passes through the homogenizer, its duty factor 

is the vessel size factor 0.08 m3/kg×3, i.e., Dij=0.24 m3/kg.

The meaning of a capacity of 0.24 m3/h is that it allows 1 kg 

of final product cryophilic protease to be processed in 1 h. 

The general batch processes literature considers 

semicontinuous units to work in series with batch units so 

that their operating time are the times for filling or emptying 

the batch units. However, in the process considered, pumps 

are the only semicontinuous units, which transfer batches 

between the units. As the pumps cost does not have a 

relevant impact on the plant design, they were not explicitly 

modeled. The times for filling and emptying batch items 

were estimated and included in the batch cycle times. On the 

other hand, the process does have special semicontinuous 

units with an important economic impact on the cost. They 

are the homogenizer and ultrafilters, but their operating time 

is the batch processing time of the respective stage. The 

mathematical model depends on both the batch size and the 

size of the semicontinuous item are as follows: 

iijj BSV  (4a) 

j

i
ijijij

R

B
TTT 10  (4b) 

where Rj refers to the size of the semicontinuous item that 

operates on the batch size at stage j. T0
ij and T1

ij are

appropriate time factors that take into account contributions 

to the total cycle time of the stage that are either fixed 

amounts of time or proportional to the batch size and 

inversely proportional to the size of the semicontinuous 

item. For the homogenizer, Rj is its capacity, T1
ij the duty

factor of the homogenizer itself and T0
ij includes the

estimated times for filling and emptying the homogenizer 

holding vessel. In the case of ultrafilters, a fixed permeate 
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flux model was considered with a rate of 20 L/m2 of 

membrane area/h. In this case, the size of the 

semicontinuous item Rj is the filtration area. T0
ij is again the

time for filling and emptying the retentate holding vessel, 

and T1
ij is the inverse of the permeate flux times the ratio (m3

permeate/kg). This ratio is estimated from a mass balance 

taking into account that the ultrafilters are used for a water 

removal from solutions up to 50 g/L of total proteins. 

Ultrafilters are used to reduce the volume required at the 

liquid extractor and the chromatographic column. The upper 

bound on concentration is a constraint that avoids protein 

precipitation. The microfilter model is quite similar to that of 

the ultrafilter, but there are two batch items associated to 

them instead of one, the retentate and the permeate vessels, 

plus the semicontinuous item area of filtration. For 

microfilter 1 a fixed permeates flux of 200 L/m2h is adopted. 

For extracellular insulin and chymosin, we estimate a total 

permeate (feedwater plus make up water) twice the feed, 

while for intracellular protease and vaccine we estimate it in 

75% of the feed (the retentate is concentrated four times). 

For microfilter 2 a fixed permeate flux model is also used. In 

this case, the flux is smaller than the one in microfilter 1 

because the pore size to retain cell debris is smaller than the 

one for whole cells. As a first estimation we take 100 L/m2h 

and a total permeate (feed plus make up water) twice the 

feed. With respect to the chromatographic column, an 

adsorptive type chromatography is considered, with a 

binding capacity of 20 kg/m3 of column packing. The size 

factor of this unit is the inverse of that binding capacity. As a 

first approximation, a fixed total operating time of 0.5 h was 

estimated for loading, eluting and washing regeneration. 

Finally, the stage model is completed with a cost model that 

expresses the cost of each unit as a function of its size, in the 

form of a power law. These expressions are summarized in 

Table 4, with most of the cost data [20]. 

Table 4. Cost of equipment (U.S. Dollars). 

Unit Size Cost 

Fermenter Vj(m
3) 63400V0.6 

Micro and ultrafilters Vretentate(m
3) 5750Vr

0.6

Homogenizer 
 Vholding(m

3) 5750V0.6 

Cap(m3/h) 12100cap0.75 

Extractor Vextr(m
3) 23100V0.65 

Chromatography Vchrom(m3) 360000V0.995 

Model equations 

The mathematical optimization model for designing the 

multiproduct batch plant is described in this section. The 

model includes the stage models described in the previous 

section plus additional constraints that are explained in this 

section. The plant consists of M batch stages (in our case 8 

batch stages). Each stage j has a size Vj(m
3) and more than

one unit can be installed in parallel. They can work either in-

phase (starting operation simultaneously) or out of phase 

(starting times are distributed equally spaced between them). 

The duplication in phase is adopted in case the required 

stage size exceeds the specific upper bound. In this case Gj 

units are selected, splitting the incoming batch into Gj 

smaller batches, which are processed simultaneously by the 

Gj

  
units. After processing, the batches are added again into a 

unique outgoing batch. Otherwise, duplication out-of-phase 

is used for time-limiting stages, if a stage has the largest 

processing time, then it is a bottleneck for the production 

rate. Assigning Mj units at this stage, working in out of 

phase mode, reduces the limiting processing time and thus 

increases the production rate of the train. For this case, the 

batches coming from the upstream stages are not split. 

Instead, successive batches produced by the upstream stage 

are received by different units of stage j, which in turn pass 

them at equally spaced times onto the downstream batch 

stage. The allocation and sizing of intermediate storage has 

been included in the model to get a more efficient plant 

design. The goal is to increase unit utilization. The insertion 

of a storage tank decouples the process into two 

subprocesses: one upstream from the tank, and the other 

downstream. This allows the adoption of independent batch 

sizes and limiting cycle times for each subprocess. 

Therefore, the previously unique Bi
 
is changed to 

batch sizes Bij defined for product i in stage j. Appropriate 

constraints adjust the batch sizes among different units. The 

objective is to minimize the capital cost of the plant. The 

decision variables in the model are as follows: 

At each batch stage the number of parallel units in phase and 

out of phase and their size, and the installation or absence of 

intermediate storage between the batch stages and their size. 

The plant is designed to satisfy a demand of Qi (kg) of each 

product i, for the P product considered, within a time 

horizon H(h). 

In summary, the objective function to be optimized is 
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 
 



M

j

M

j

jjjjj
jj VTVaGMMinCost

1 1


(5) 

where aj and αj, cj and ηj are appropriate cost coefficients 

that depend on the type of equipment being considered. VTj

 is the size of the storage tank allocated after stage j. The size 

of each unit has to be large enough to be able to process 

every product: 

MjPi
G

BS
V

j

ijij

j ,...,1;,...,1  (6) 

where Sij is the size factor for product i in stage j. In case of 

parallel units working in phase, the division of Bij by the 

number of units Gj

 
takes into account the reduction in the 

batch size to be processed by these units. The operation time 

Tij to process product i at stage j has the general following 

form: 

MjPi
R

B
TTT

j

ij

ijijij ,...,1;,...,110  (7) 

where Tij
0 and Tij

1 are appropriate constants that depend on

both the product and the stage. Expression 7 accounts for a 

fixed and variable contribution to the total operating time. 

The last term in Equation 7 depends on both the batch size 

and the size of the semicontinuous item associated to this 

batch stage, as was already discussed previousely. 

The limiting cycle time for product i in the subprocess h, 

TLh, is the largest processing time in this production train: 

hJjPi
M

T
TL j

j

ijh
i  ;;,...,1 (8) 

where Jh is the set of units which conform the subprocess h 

the division by the number of units in parallel working out of 

phase, Mj takes into account the reduction in the cycle time 

of this stage due to the operation of Mj units that 

alternatively process the consecutive batches. To avoid 

accumulation of material, the processing rate of both 

subprocess downstream and upstream of the storage tank 

must be the same: 

Pi
TL

B

TL

B
u
i

u
i

d
i

d
i ,...,2,1




























(9) 

The constraints 9 equalizes the production rate upstream and 

downstream of the storage tank. To express 9 in a simple 

form, the inverse of the production rate of product i(Ei), is 

defined as: 

hJjPi
B

TL
E h

ij

h
i

i  ;;,...,2,1 (10) 

Expression 10 is used to replace TLi
n

 
in constraint 8,

dropping constraint 9. The production constraint is posed as 

follows: during the time horizon H the plant must produce 

the target production quantities Qi of each product i. The 

number of batches of each product i to be produced during 

time H is 

i

i

B

Q and the production of each batch demands a 

time TLi. The following constraints holds: 






P

i

ii HEQ

1

(11) 

The size of the storage tank VTj, allocated after batch stage j, 

is given by the following expression [25]: 

  1,...,1;,...,11   MjMiBBSTVT ijijijj (12) 

where STij is the size factor corresponding to the 

intermediate storage tank, with identical definition to the 

batch stages. As no a priori tank allocation is given, binary 

variables yj are used to select their allocation. The value of 

variables yj is 1 if a tank is placed in position j, or zero 

otherwise. Constraint 12 is generalized to size the tank only 

if it exits: 

    1,...,1;,...,111   MjPiyFBBSTVT jjijijijj

(13) 

where Fj is a constant value sufficiently large such that when 

yj is 0 ( the tank does not exist), the constraint is trivially 

satisfied for any value of VTj. 

In particular, the cost minimization will drive VTj=0. When 

the tank exists (yj=1) the term with Fj vanishes and the 

original constraint (12) holds. If the storage tank does not 

exist between two consecutive stages, then their batch sizes 

are constrained to be equal. Otherwise, this constraint is 

relaxed. This effect is imposed by the following constraints:  

  1,...,1;,...,1111
1

1
1
















MjPiy
B

B
y j

ij

ij

j

(14) 

where φ is a constant value corresponding to the maximum 

ratio allowed between two consecutive batch sizes. 

In summary, the multiproduct plant design model that 

includes the options of parallel units in-phase and/or out of 

phase and provision of intermediate storage, consists of the 

objective function 5 subject to constraints 6, 8, 11, 13 and 

14, plus the upper and lower bounds that may apply. An 

important feature of the model is that both the objective 

function and the constraints are posynomial expressions that 

possess a unique local (and thus, global) solution [20]. This 

basic model has been adapted to handle the particular feature 

of the composite stages (homogenizer, ultrafilters and 

microfilters). In this case, constraint 6 is applied not to a 
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general batch stage size but to each of the items that 

compose it. So in the case of microfilters, constraint 6 

applies to both the retentate and the permeate vessels. A new 

parameter SRij was introduced to represent the size factor of 

the retentate vessel, while Sij was left for the permeate 

vessel. Also in this case, the objective function must account 

for all the stage components. The notation aj and αj

 

were left 

for the cost coefficients of the permeate vessel, bj and βj 
 
for 

the retentate vessel and dj and γj 
 
for the filtration area. A 

similar approach was implemented for the ultrafilters 

(retentate vessel and ultrafiltration area) and homogenizer 

(holding vessel and the homogenizer itself). 

Methodology 

Between 2000s and 2020s witnessed a tremendous 

development in the size and complexity of industrial 

organizations. Administrative decision-making has become 

very complex and involves large numbers of workers, 

materials and equipment. A decision is a recommendation 

for the best design or operation in a given system or process 

engineering, so as to minimize the costs or maximize the 

gains [21]. Using the term “best” implies that there is a 

choice or set of alternative strategies of action to make 

decisions. The term optimal is usually used to denote the 

maximum or minimum of the objective function and the 

overall process of maximizing or minimizing is called 

optimization. The optimization problems are not only in the 

design of industrial systems and services, but also apply in 

the manufacturing and operation of these systems once they 

are designed. Including various methods of optimization, we 

can mention: MINLP, route-packing-based-batch (RPBB) 

and seed-based-batch (SeedBB). 

Route-packing-based batching (RPBB) 

Binning packs items into bins so that the structure of each 

bin aids the formation of batches with short total travel 

distances. The objective is to shorten the total travel 

distances of all bins since it is easier to form batches with 

short total travel distances from the bins with short total 

travel distances formulating the route-selection-based 

binning model to group items into bins and select a route for 

each batch. The heuristic repeats until no more items remain 

to be batched as follow [22]: 

 Step 1. Sort all items in descending order of size.

 Step 2. If there are no more items on the list, terminate;

otherwise, select the first item inthe list, place it into a new

batch as the current batch and delete the item from the list.

 Step 3. If it is the last item on the list, set the current bin as

complete and go back to step 2; otherwise, move to the next

item on the list and set this item as the candidate item for the

current bin.

Step 4. If the total size of current bin and candidate item is

smaller than or equal to the bin capacity, add the candidate

item to the bin, delete the candidate item from the item list 

and go back to step 3. 

Seed-based-batch (SeedBB) 

The seed heuristic constructs a batch starting from 

the selection of seed order as the batch’s initial order and 

adds orders iteratively until the batch is full or no orders 

remain to be batched. Seed-based binning-then-batching 

(SeedBB) uses seed heuristics to solve the binning problem 

and the batching problem separately as follows [23]: 

 Step 1. Calculate the saving in travel distance Sij for all

possible bin pairs i,j considering the size of each bin and

batch capacity.

 Step 2. Select the pair with the highest saving as the best

pair. In case of a tie, select a random pair.

 Step 3. Combine the bins in the best pair as a single bin and

update the bin list.

Step 4. If there is any bin with size smaller than or equal to

the batch capacity, go back to step 1; otherwise, put each of

the remaining bins into an individual batch and terminate.

Statistical analysis methods

The interest in statistical analysis methods has grown

recently in the field of computational intelligence. In this

section, I will discuss the basic and give a survey of a

complete set of variance analysis procedures developed to

perform the comparison between RPBB and SeedBB, via the

use of describing a test of the null hypothesis, which applies

to independent random samples from two normal

populations of size n1 and n2 are taken from normal

population having the same variance, it follows

distribution with n1-1 and n2-1 degrees of freedom,

according to this equation:

However, the error from the optimal solution is given by: 

exp

exp
100%

x

xx
error

cal
 (19) 

In this research, xexp is considered to be the optimal solution 

founded by Montagna (Plant cost $829,500), where the 

equation (19) is a criterion to confirm the optimal values. 

RESULTS 

The problem could be formulated as the minimization of the 

investment cost for equipment and storage tanks. Given that 

the problem modeled has nonlinear objective function. For 

the purpose of optimization problem, the model developed 

has been solved with RPBB and SeedBB Python Toolbox 

respectively, which is included in the GNU Octave Scientific 

Programming Language, using the data shown in Tables 1, 

2, 3 and 4. A horizon time of 6000 h has been considered. 
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However, the intermediate storage cost coefficient with size factors is shown in Table 5. 

Table 5. Intermediate storage cost coefficients and size factors. 

Unit
a 

STij size factor for product i in stage j 

Insulin Vaccine Chymosin Protease 

Fermenter 1.2557 0.6254 0.4151 0.3128 

Microfilter I 2.5013 0.1557 0.8301 0.0805 

Homogenizer 2.5014 0.1553 0.8307 0.0809 

Microfilter II 2.5047 0.3108 0.8307 0.1608 

Ultrafilter I 0.4071 0.2083 0.1357 0.1077 

Extractor 0.4012 0.2008 0.1357 0.1007 

Ultrafilter II 0.0556 0.0557 0.0517 0.0545 

Chromatography 0.0001 0.0003 0.0008 0.0004 

On the other hand, the Table 6 shows the comparison of 

results for 30 runs between RPBB and SeedBB. 

Table 6. Comparison of results for 30 runs between RPBB and SeedBB. 

Values RPBB ($) SeedBB ($) 

Best 912,4776 833,1208 

Average 948,0710 850,319.1979 

Worst 976,321.1999 865,492.2013 

Standard deviation 9.2019 1.2006 

Nevertheless, the optimization runs result for the investment 

cost calculated by RPBB and SeedBB during 30 runs is 

illustrated in Table 7. 

Table 7. Optimization runs results for the investment cost founded by RPBB and SeedBB during 30 runs. 

Technique Plant cost ($) % from optimal solución CPU time (s) 

RPBB 912,4776 0.5 100 

SeedBB 833,1208 11 900 
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Nonetheless, the equipment structure computed by SeedBB is showed in Table 8. 

Table 8. Equipment structure calculated by SeedBB. 

Stage 1 2 3 4 5 6 7 8 

Vj 24.7456 1.1814 9.922 0.8921 0.6017 0.0825 

Rj NA 
A: 

16.2041 

Cap: 

1.0989 
A:8.668 

A: 

109.3301 
NA 

A: 

17.8134 
NA 

VTj 29.7066 NA NA NA 2.2154 NA 0.3795 NA 

Mj 3 3 3 3 3 3 3 3 

Gj 3 3 3 3 3 3 3 3 

However, Table 9 shows equipment structure calculated by 

RPBB. 

Table 9. Equipment structure calculated by RPBB. 

Stage 1 2 3 4 5 6 7 8 

22.6085 1.0794 9.0651 0.8151 0.5497 0.0754 

NA 
A: 

14.8047 
Cap: 1.004 A: 7.9194 

A: 

99.8880 
NA 

A: 

16.2750 
NA 

27.1410 NA NA NA 2.0241 NA 0.3795 NA 

1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 

The idle times in plant calculated by SeedBB is provided in 

Table 10. 

Table 10. Idle times in plant calculated by SeedBB (s). 

Unit 

Product 1 2 3 4 5 6 7 8 

Insulin 0 0 NA NA 0 57.7 NA 67.11 

Vaccine 0 54 0 0 60.7977 57.7128 22.14 67.13 

Chymosin 0 17 NA NA 17.5501 57.7708 27.9171 67.1178 

Protease 0 63 16 15 63.0713 57.7794 55.0317 67.1103 
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However, the idle times in plant calculated by RPBB is 

 shown in Table 11. 

Table 11. Idle times in plant calculated by RPBB (s). 

Unit 

Product 1 2 3 4 5 6 7 8 

Insulin 0 0 NA NA 0 0.01 0 0 

Vaccine 0 1.91 0.03 0 2.81 0 0.15 0 

Chymosin 0 0.01 NA NA 0 0 0.31 0.16 

Protease 0 2.05 0 0 3.05 0 0.3 0 

The results of the statistical analysis are illustrated in Tables 

12 and 13. 

Table 12. The results of two algorithms solving MBPD problem. 

Algorithm N Avg SD
Standard

Error

95% Confidence Interval of Mean
Min Max

Min Max

SeedBB 30 1879.0000 8.68935 2.98743 1933.9205 1945.0795 1928 1957

RPBB 30 1831.0000 5.39936 2.05701 1728.2733 1737.7201 1728 1745

Table 13. Variance analysis result of MBPD problem. 

Quadratic 

sum

Free 

degree

Mean

square

F Significance

SDB 2349.676 3 778.895 14.455 0.000

SDI 1824.100 36 51.392 - -

SUM 4354.775 39 - - -

DISCUSSION 

It is clear from the summary of the results shown in Table 7, 

that the performance of both SeedBB and RPBB produce 

adequate values regarding the cost for equipment and 

storage tanks. However, RPBB performs better than the 

SeedBB in terms of the average and the worst fitness values 

and the standard deviation. Table 7, also, shows the best 

final solution found in the 30 runs of SeedBB and RPBB. 

According to our knowledge, the case study about the 

optimal design of protein production plant has been taken 

from Montagna. However, they solved the problem using 

rigorous mathematical programing (MINLP), their model 

includes 104 binary variables and has been convexified 

using the transformation proposed by Kocis and Grossmann. 

The MINLP model has been solved using DICOPT++, 

which is included in the GAMS optimization modeling 

software. The algorithm implemented in DICOPT++ relies 

on the Outer Approximation/Equality 

Relaxation/Augmented Penalty (OA/ER/AP) method. The 

OA/ER/AP solution method consists of the decomposition of 

the original MINLP problems into a sequence of two 

subproblems: A nonlinear programming (NLP) subproblem 

and a mixed integer linear programming (MILP) subproblem 

also known as the Master problem, which is solved to global 

optimality (minimize the caplital cost $829,500). However, 

in previous work of Montagna and other, their model needed 

a long computational time (more than 86400 s) and require 

several initial values to the optimization variables, they also 

showed in their paper that the behavior of the demand was 

completely deterministic. 
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Whilst, this assumption does not seem to be always a 

reliable representation of the reality, since in practice the 

demand of pharmaceutical products resulting from the batch 

industry is usually variable. 

Simulations outcomes were then compared with 

experimental data in order to check the accuracy of the 

method. Table 7 presents the results obtained in different 

optimization runs for multiproduct batch plant design. For 

each simulator run, the average numerical effort spent on 

solving the problem on LINUX System, Intel® D, CPU2.80 

GHz, 2.99 of RAM. Table 7 shows plant cost, % from 

optimal solution and CPU time obtaining during 30 runs. 

SeedBB and RPBB performed effectively and give a 

solution within 10 and 0.5% of the global optimal $912,450 

and $833,647, respectively. Furthermore, the important 

feedback could be taken from Table 7, is the GA results in a 

faster convergence than SeedBB and the MINLP algorithm. 

In addition, the RPBB is so close to the global optimal of 

MBPD (0.5% from optimal solution) and provides also an 

interesting solution, in terms of quality as well as of 

computational time as illustrated in Table 7, while Table 8 

presents the sizes for the units involving a set of discrete 

equipment structure given by SeedBB. The inconvenience of 

this configuration is just stopped at 6000 h with risk of 

failing to fulfill the potential future demand coming from a 

fluctuation of the market. 

In order to show how the evolution process is going on for 

both SeedBB and RPBB, respectively, the convergence of 

the best fitness values. The convergence rate of objective 

function values as a function of generations for both SeedBB 

and RPBB where for clarity only 1000 generations are 

shown. For the optimization problem considered, RPBB 

decrease rapidly and converge at a faster rate (around 500 

generations) compared to that for SeedBB (about 800 

generations), from which it is clear that RPBB seem to 

perform better compared to SeedBB. So, for the present 

problem the performance of the RPBB is better than SeedBB 

from an evolutionary point of view. 

To compare the computational time, the swarm/population 

size is fixed to 200 for both SeedBB and RPBB algorithms. 

Whereas, the generation number is varied. Simulation were 

carried out and conducted on LINUX System, Intel (R) D, 

CPU 2.80 GHz, 2.99 of RAM Computer, in the GNU Octave 

environment. Here the result in the form of graph is shown 

in. It is clear from that the computational time for RPBB is 

very low compared to the SeedBB optimization algorithm. 

Further, it can also be observed from hat in case of RPBB 

the computational time increases linearly with the number of 

generations, whereas for SeedBB the computational time 

increases almost exponentially with the number of 

generations. The higher computational time for SeedBB is 

due to the communication between the particles after each 

generation. Hence as the number of generations increases, 

the computational time increases almost exponentially. 

Table 8 presents the sizes for the units involving a set of 

discrete equipment structure given by SeedBB. The 

inconvenience of this configuration is just stopped at 6000 h 

with risk of failing to fulfill the potential future demand 

coming from a fluctuation changing of the market. 

On the other hand, the calculation of the structure of 

equipment using RPBB is illustrated in Table 9. The total 

production time, also, computed by RPBB is 5491.12 h to 

fulfill the eventual increase of future demand caused by 

market fluctuation. In addition, the RPBB results in a faster 

convergence. However, the equipment structure showed by 

SeedBB is very expensive. Furthermore, the SeedBB 

approach has the disadvantage of long CPU time. 

At the same time as, the RPBB allow the reduction of the 

idle time to the stage, in any way, Table 10 and Table 11 

show the idle times obtained by SeedBB and RPBB 

respectively. 

However, some observations about some important aspects 

in our implication of RPBB and some problems in practice: 

The most important of all is the method of coding, because 

the codification is very important issue when a Route-

packing-based batching is designed to dealing with 

combinatorial problem, also of the characteristics and inner 

structure of the DMBP. 

The commonly adopter concatenated, multi-parameter, 

mapped, fixed point coding are not effective in searching for 

the global optimum. According to the inner structure of the 

design problem of multiproduct batch that gives us some 

clues for designing the above mixed continuous discrete 

coding method with a four-point crossover operator. As is 

evident from the results of application, this coding method is 

well fit for the proposed problem. 

In order to further explain the effects of these algorithms on 

solving the MBPD problem, the variance analysis was 

performed. Each of the SeedBB and RPBB algorithms was 

run 30 times. The R software was used to analyze the results. 

Therefore, the results are given in Table 12 and 13. 

Table 13 indicates that, the mean square deviation between 

groups (SDB) is 779.895. The mean square deviation within 

groups (SDI) is 50.392. The test statistic F = 15.477. If 

significance level α = 0.05, then the critical value 2.92≤ 

Fα(3.36)≤2.84. Thus, F> Fα(3.36) indicating that the 

difference between the average is significant, that is, the 

performance difference of algorithms is significant. 

Nevertheless, these techniques are not a panacea, despite 

their apparent robustness, there are control “parameters” 

involved in these metaheuristics and appropriate setting of 

these parameters is a key point for success. 

CONCLUSION 

Techniques such as SeedBB and RPBB are inspired by 

heuristic mechanism nature and have proved themselves to 
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be effective solutions to optimization problems. We applied 

route-packing-based batching to solve the problem of 

DMBP. RPBB perform effectively and give a solution 

within 0.5% of the global optimum. Whilst, it is observed 

that, in terms of computational time, the RPBB approach is 

faster. The computational time increases linearly with the 

number of generations for RPBB, whereas for SeedBB the 

computational time increases almost exponentially with the 

number of generations, interpreting that, the higher 

computational time for SeedBB is due to the communication 

between the particles after each generation. Furthermore, the 

results provided by RPBB are much better with respect to 

SeedBB. In this paper, the RPBB gave us the highest 

efficiency and justifies its use for solving nonlinear 

mathematical models. Therefore, this work provides an 

interesting decision/making approach to improve the design 

of multiproduct batch plants under conflicting goals. 
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