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ABSTRACT 
The global economic effect of the five driving chronic diseases — malignancy, diabetes, psychological instability, CVD and 
respiratory disease — could reach $47 trillion throughout the following 20 years, as indicated by an examination by the 
World Economic Forum (WEF). As per the WHO, 80% of the total people principally those of developing countries depend 
on plant-inferred medicines for social insurance. The indicated efficacies of seaweed inferred phytochemicals are 
demonstrating incredible potential in obesity, T2DM, metabolic syndrome, CVD, IBD, sexual dysfunction and a few cancers. 
Hence, WHO, UN-FAO, UNICEF and governments have indicated a developing enthusiasm for these offbeat nourishments 
with well-being advancing impacts. Edible marine macro-algae (seaweed) are of intrigue in view of their incentive in 
nutrition and medicine. Seaweeds contain a few bioactive substances like polysaccharides, proteins, lipids, polyphenols and 
pigments, all of which may have useful wellbeing properties. People devour seaweed as nourishment in different structures: 
crude as salad and vegetable, pickle with sauce or with vinegar, relish or improved jams and furthermore cooked for 
vegetable soup. By cultivating seaweed, coastal people are getting an alternative livelihood just as propelling their lives. In 
2005, world seaweed generation totaled 14.7 million tons which has dramatically increased (30.4 million tons) in 2015. The 
present market worth is almost $6.5 billion and is anticipated to arrive at some $9 billion in the seaweed global market by 
2024. Aquaculture is perceived as the most practical methods for seaweed generation and records for around 27.3 million 
tons (over 90%) of global seaweed creation per annum. Asian nations created 80% for world markets where China alone 
delivers half of the complete interest. The best six seaweed delivering nations are China, Indonesia, Philippines, Korea and 
Japan. 
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Forum; IHDs: Ischemic Heart Diseases;UN-FAO: Food and Agriculture Organization of the United Nations; GEBT: Gastric 
Emptying Breath Test; LMICs: Low and Middle Income Countries; CLA: Conjugated Linoleic Acid; SOFA: State of Food 
and Agriculture; UCP-1: Uncoupling Protein-1; HbA1c: Hemoglobin A1c; ERK: Extracellular Signal-Regulated Kinases; 
IBD: Inflammatory Bowel Disease; ACE: Angiotensin Converting Enzyme; OA: Osteoarthritis; CYP1: Cytochrome P450 1; 
MAPK: Mitogen-Activated Protein Kinases; COX 2: Cyclooxygenase-2; PI3K/AktV: Phosphatidylinositol 3-Kinase/Protein 
Kinase B; NF-κB: Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B Cells 

INTRODUCTION 

According to FAO of the UN, nearly 45% of the female 
workforce is working in agriculture. Seaweed farming is 
surely a step toward gender equality (Figure 1). 
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Figure 1. Seaweed farming. 
Source: SOFA Team and Cheryl Doss. The role of women in agriculture. ESA Working Paper No. 11-02, March 2011 

OBESITY, HYPERTENSION AND 
HYPERGLYCEMIA MANAGEMENT 

According to the WHO, 2.3 billion adults are overweight 
and the prevalence is higher in females of childbearing age 
than males [1]. In the US, the economic burden of obesity is 
estimated to be about $100 billion annually [2]. Worldwide 
obesity causes 2.8 million deaths per year and 35.8 million 
disability-adjusted life-years, some 45% of diabetes, 25% of 
IHDs and up to 41% of certain cancers [3]. Four major 
bioactive compounds from seaweeds which have the 
potential as anti-obesity agents are fucoxanthin, alginates, 
fucoidans and phlorotannins [4]. Alginates are amongst the 
seaweed fibers that are well-known for their anti-obesity 
effects. They have been shown to inhibit pepsin, pancreatic 
lipase [5], reduced body weight, BMI and the blood glucose 
level [6], ameliorate fat accumulation, TG and TC [7] in 
experimental animals. Koo et al. [8] reported Fucoxanthin 
powder developed from microalga Phaeodactylum 

tricornutum (Bacillariophyta) plus CLA or Xanthigen 
improved lipid metabolism, reduced body weight gain and 
adipose tissue. Individually, fucoxanthin lowers glycated 
hemoglobin, especially in healthy subjects with a certain 
UCP1 genotype [9]. Mendez et al. [10] reported anti-
obesogenic potential of seaweed dulse (Palmaria palmata) 
(Rhodophyta) (Figure 2) in high-fat fed mice. Seca et al. 
[11] suggested that small peptides from seaweed may
possess bioactivity, for example, of relevance for BP
regulation. Yang et al. [12] reported Fucoidan A2 from the
brown seaweed Ascophyllum nodosum (Ochrophyta,
Phaeophyceae) (Figure 3) lowers lipid by improving reverse
cholesterol transport in mice. Sørensen et al. [13] reported

improved HbA1C and lipid profile with Saccharina 

latissima (Ochrophyta, Phaeophyceae) or sugar kelp (Figure 
4) in mice. Fucoidan taken twice daily for a period of 90
days did not markedly affect insulin resistance in obese,
nondiabetic cohort [14], but attenuates obesity-induced
severe oxidative damage [15], show anticoagulant activity
[16], suppress fat accumulation [17], may improve obesity-
induced OA [18], antioxidant and lipolytic activities [19].
Catarino et al. [20] reported Fucus vesiculosus (Ochrophyta,
Phaeophyceae) (Figure 5) phlorotannin-rich extracts have
significant effect on α-glucosidase, α-amylase and pancreatic
lipase. Phlorotannins, farnesylacetones and other
constituents from seaweeds — have also been described for
their potential use in hypertension due to their reported
vasodilator effects [21]. Sun et al. reported the hydrogen
bond and Zn (II) interactions between the peptides of Marine
Macroalga Ulva intestinalis (Chlorophyta) and ACE [22]. In
similar studies, peptides from Sargassum siliquosum,
Sargassum polycystum [23], Fucus spiralis (Ochrophyta,
Phaeophyceae) [24], Palmaria palmata [25], Pyropia

yezoensis (Rhodophyta), Undaria pinnatifida (Ochrophyta,
Phaeophyceae), Ulva clathrate (formerly Enteromorpha

clathratclathrate), Ulva rigida (Chlorophyta), 
Gracilariopsis lemaneiformis, Pyropia columbina 

(Rhodophyta), Ecklonia cava, Ecklonia stolonifera, Pelvetia 

canaliculata, Sargassum thunbergii (Ochrophyta, 
Phaeophyceae) [26], Pyropia yezoensis (formerly Porphyra 

yezoensis) [27], Fushitsunagia catenata (formerly 

Lomentaria catenata), Lithophyllum okamurae, 

Ahnfeltiopsis flabelliformis (Rhodophyta) [28] show 
potential ACE inhibitory activities. Besides the activation of 
Ag II, ACE plays a concomitant role in the regulation of 
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hypertension via the inactivation of an endothelium-
dependent vasodilatory peptide, bradykinin [28,29]. 
Kammoun et al. reported hypolipidemic and cardioprotective 
effects of Ulva lactuca (Chlorophyta), which effectively 
counteracts cardiotoxic effects of hypercholesterolemic 
regime [30]. In several studies Ulva species showed 
hypotensive, hypoglycemic, hypolipaemic and 
antiatherogenic properties [31-40]. Moreover, studies also 
support seaweed-induced effects of postprandial 

lipoproteinemia [41-43], postprandial hyperglycemia [44-
55], lipid metabolism and atherosclerosis [56-70], reduced 
body weight [71-80], HbA1c [13,34,52,55,81-90], reduced 
BP/episodes of hypertension [11,26,28,46,49,53,66,80,91-
102] and prevented obesity-induced oxidative damage
[4,8,13,34,103-120]. Increased seaweed consumption may
be linked to the lower incidence of metabolic syndrome in
eastern Asia [28].

Figure 2. Palmaria palmate. 
Source: What is Dulse Seaweed? Mara Seaweed October 17, 2017 

Figure 3. Ascophyllum nodosum. 
Source: Ascophyllum nodosum. Jiloca Industrial, S.A. Agronutrientes Blog 
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Figure 4. Saccharina latissima or sugar kelp. 
Source: Nature Picture Library 

Figure 5. Fucus vesiculosus L. 
Source: Seaweed Site of M.D. Guiry 
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CANCER PREVENTION AND TUMOR CONTROL 

In 2019, 1,762,450 new cancer cases and 606,880 cancer 
deaths are projected to occur in the United States [121]. 
Globally, cancer is responsible for at least 20% of all 
mortality [122], 18.1 million new cancer, 9.5 million death 
in 2018 [123,124], the 5 year prevalence of 43.8 million 
[125], is predicted to rise by 61.4% to 27.5 million in 2040 
[126]. Approximately 70% of deaths from cancer occur in 
LMICs [127]. Asia, Africa, and Latin America are 
collectively home to more than 50% of cancer patients; with 
more than half of global cancer-related mortalities occurring 
in Asia alone [128]. Cancer causes 46 billion in lost 
productivity in major emerging economies [129] and 
economic costs of tobacco-related cancers exceed USD 200 
billion each year [130]. Compounds from natural sources 
with anti-proliferative activity represent an important and 
novel alternative to treat several types of cancer. Egregia 

menziesii (brown seaweed) (Figure 6) [131], Portieria 

hornemannii [132], Grateloupia elliptica (Rhodophyta) 
[133], Sargassum serratifolium [134], Chitosan alginate 
(polysaccharide from seaweeds) [135-143], xanthophylls 
(astaxanthin, fucoxanthin) and Phlorotannins 
(phloroglucinol) obtained from the microalgae [144-155], 
are reported in brain tumor (glioblastoma) studies. 
Astaxanthin and fucoxanthin are major marine carotenoids. 
Major seaweed algae sources of astaxanthin mono- and di- 
esters are the green microalgae (Hematococcus lacustris - 
formerly Haematococcus pluvialis (Figure 7), 
Chromochloris zofingiensis - formerly Chlorella 

zofingiensis, Chlorococcum) and red-pigmented fermenting 
yeast Phaffia rhodozyma [156,157]. Fucoxanthin is present 
in Chromophyta (Heterokontophyta or Ochrophyta), 
including brown seaweeds (Phaeophyceae) and diatoms 
(Bacillariophyta) [158]. Several 2019 reviews discuss use of 
fucoidans (sulfated polysaccharide mainly derived from 
brown seaweed) in lung cancer management. Brown algae 
like Fucus vesiculosus, Turbinaria conoides, Saccharina 

japonica (formerly Laminaria japonica) (Figure 8) are 
reported in inhibition of tumor migration and invasion, 
apoptosis induction, and inhibition of lung cancer cell 
progression respectively [159]. Fucus distichus ssp. 

evanescens (formerly Fucus evanescens), Sargassum sp. 
(Figure 9) and Saccharina japonica were reported to inhibit 
proliferation and metastasis and induce apoptosis In vitro 
[160]. Undaria pinnatifida acted on ERK1/2 MAPK and 
p38, PI3K/Akt signaling; F. distichus ssp. evanescens 

(formerly F. evanescens) increased metastatic activity of 
cyclophosphamide and showed cytolytic activity of natural 
killer cells in 2 different studies and F. vesiculosus 

decreased NF-κB in LLC [161]. U. pinnatifida was found to 
show average antitumor and superior efficacy against LLC 
in the review of Misra et al. [162]. Sponge alkaloids from 
Aaptos showed potential in human lung adenocarcinoma 
A549, Fascaplysinopsis (Porifera) exerted an anti-
proliferative and pro-apoptotic effect in lung cancer, and 
blue sponge Xestospongia showed apoptosis as well as 
stimulate anoikis in H460 lung cancer cells in review by 
Ercolano et al. [163]. The most common breast cancer type 
is the invasive ductal carcinoma accounting for 70-80% of 
all breast cancers diagnosed [164]. Brown seaweed fucoidan 
inhibited human breast cancer progression by upregulating 
microRNA (miR)-29c and downregulating miR-17-5p, 
thereby suppressing their target genes [165]. Lophocladia sp. 
(Lophocladines), Fucus sp. (fucoidan), Sargassum muticum 

(polyphenol), Pyropia dentata (formerly Porphyra dentata) 
(sterol fraction), Cymopolia barbata (CYP1 inhibitors), 
Agarophyton tenuistipitatum (formerly Gracilaria 

tenuistipitata) Gracilaria termistipitata was found to be 
effective in breast cancer studies [166]. High Urokinase-type 
plasminogen activator receptor (uPAR) expression predicts 
for more aggressive disease in several cancer types [167], 
dietary seaweed may help lowering breast cancer incidence 
by diminishing levels of uPAR [168]. The tropical edible red 
seaweed Kappaphycus alvarezii (formerly Eucheuma 

cottonii) (Figure 10) is rich in polyphenols that exhibited 
strong anticancer effect with enzyme modulating properties 
[169]. Jazzara et al. [170] concluded that λ-carrageenan 
(sulfated galactans found in certain red seaweeds) could be a 
promising bioactive polymer, as it showed a remarkable 
inhibitory effect on MDA-MB-231 (triple negative breast 
cancer cell line) cell migration [171]. Several studies support 
polyphenols [172-176], flavonoids [177-186], fucoidan 
[159,160,166,187-195], lutein/zeaxanthin [196-200], other 
seaweed alkaloids, peptides, tannins and polysaccharides 
[132,164,201-210] in breast cancer management. The 
number of deaths from colorectal cancer in Japan continues 
to increase [211], it is the third most common diagnosis and 
second deadliest malignancy for both sexes combined [212]. 
It has been projected that there will be 140,250 new cases of 
colorectal cancer in 2018, with an estimated 50,630 people 
dying of this disease [213]. High intake of red and processed 
meat and alcohol have been shown to increase the risk of 
colorectal cancer [214]. U. pinnatifida [159,188,215-221], 
Saccharina latissima [222], Fucus vesiculosus 
[117,160,223,224], Sargassum hemiphyllum (Ochrophyta, 
Phaeophyceae) [155,225,226] have proven efficacy in this 
situation. Also, algae derived astaxanthin [150,227-232], 
fucoxanthin [233-237], lutein and zeaxanthin [238-241], 
polyphenols [242-246] have shown individual excellence. 
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Figure 6. Egregia menziesii brown seaweed. 
Source: University of British Columbia Garden 

Figure 7. Haematococcus pluvialis. 
Source: VERYMWL, Thailand 

Figure 8. Saccharina japonica (formerly Laminaria japonica). 
Source: TCM Herbs 
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Figure 9. Sargassum sp. 
Source: POND5 

Figure 10. Kappaphycus alvarezii (formely Eucheuma cottonii). 
Source: Blog at WordPress.com 

NEUROPROTECTION IN STROKE, ALZHEIMER’S 
AND PARKINSONISM 

Stroke is a leading cause for disability and morbidity 
associated with increased economic burden due to the need 
for treatment and post-stroke care. Acute ischemic stroke has 
enormous societal and financial costs due to rehabilitation, 
long-term care, and lost productivity. Between 2010 and 
2030, stroke is expected to increase by more or less 60% in 
men and 40% in women [248]. Several studies reported 
neuroprotective role of astaxanthin and fucoxanthin 
[145,248-268] in stroke prevention, Alzheimer’s, 
Parkinsonism and other neurodegenerative diseases. 

Barbalace et al. reported that marine algae inhibit pro-
inflammatory enzymes such as COX-2 and iNOS, modulate 
MAPK pathways, and activate NK-kB [269]. Neorhodomela 
aculeata, Rhodomela confervoides (Rhodophyta) [26], 
[270], Ecklonia cava (Figure 11) [271-275], Saccharina 

japonica (formerly Laminaria japonica) [276-281], Fucus 

vesiculosus [282-287], Sargassum spp. [288-295], 
Saccorhiza polyschides (Ochrophyta, Phaeophyceae) [283], 
Codium tomentosum [296], Ulva spp. (Chlorophyta), [256], 
[267, 293, 297-300], Ecklonia maxima (Ochrophyta, 
Phaeophyceae) [256, 301-303], Gracilaria spp. (Figure 12) 
[296,304-311], Gelidium pristoides (Rhodophyta), 
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[312,313], Halimeda incrassata (Chlorophyta) [314,315], 
Alsidium triquetrum (formerly Bryothamniom triquetrum) 
[316-318], Chondrus crispus (Figure 13) [319,320], Hypnea 

valentiae (Rhodophyta) (Figure 14) [298], Ecklonia 

stolonifera (Ochrophyta, Phaeophyceae) [321-323] were 
reported in several studies as neuro-protectives and 
suggested for use in neurodegenerative situations or are 
already in use in such conditions. 

Figure 11. Ecklonia cava. 
Source: Predator Nutrition 

Figure 12. Gracilaria tikvahiae - Red seaweed 
Source: Flickr 
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Figure 13. Chondrus crispus - Carragheen or Irish moss. 
Source: APHOTOMARINE 

Figure 14. Hypnea valentiae. 
Source: iNaturalist 
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ALIMENTARY DISORDERS 

In the USA, the sales of prescription GI therapeutic drugs 
were $25 billion, the 10th leading therapeutic class in terms 
of sales [324], with $135.9 billion spent for GI diseases in 
2015 [325]. Urbanization, western diet, hygiene, and 
childhood immunological factors are associated with IBD in 
Asia [326]. On the other hand, 14% of the global population 
is affected by IBS and 30% by constipation [327,328]. Na-
alginate has been used in the treatment of heartburn and 
GERD, although ESPGHAN/NASPGHAN Guidelines do 
not recommend its use in chronic GERD [329,330]. The 
[13C]-Arthrospira platensis (formerly Spirulina platensis) 
(Cyanobacteria) GEBT is an easy to measure of gastric 
emptying with accuracy [331-333]. Saccharina japonica 
(formerly Laminaria japonica) (Ochrophyta, Phaeophyceae) 
(vomiting, hemorrhoids, IBD, probiotic synergist) [334,335], 
Kappaphycus alvarezii (formerly Eucheuma cottonii) 

(Rhodophyta) (IBD, hepatoprotective, anti-food allergy) 
[336-338], Caulerpa mexicana (Chlorophyta) (Figure 15) 
(Gastroprotective, IBD) [339-341], Hypnea musciformis 
(IBD) (Rhodophyta) [336,342], Fucus vesicolosus 
(gastroprotective, ulcerative colitis) [117], [343], Laminaria 

hyperborean, Laminaria digitatae (IBD) [344,345], Undaria 

pinnatifida (Ochrophyta, Phaeophyceae) (Figure 16) 
(improves gut health) are reported for use in gut health 
modulation [346]. In addition, seaweed polysaccharides are 
atypical in structure to terrestrial glycans and were found to 
resist gastric acidity, host digestive enzymes and GI 
absorption [347]. Maternal seaweed extract supplementation 
can reduce both the sow fecal Enterobacteriaceae 
populations at parturition and piglet E. coli populations at 
weaning [348]. Also, seaweeds are good source of prebiotics 
that improve intestinal microbiota and may exert positive 
effects on IBD and IBS [349,350]. 

Figure 15. Caulerpa mexicana. 

Source: Reefs.com 

Figure 16. Undaria pinnatifida. 
Source: The Marine Life Information Network 
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THYROID FUNCTION 

Seaweeds are a rich source of iodine and tyrosine [351], 
palatable and acceptable to consumers as a whole food or as 
a food ingredient, and effective as a source of iodine in an 
iodine-insufficient population [352]. In addition, daily diet 
should include thyroid boosting foods like those rich in 
iodine, the amino acid tyrosine, minerals like selenium, zinc, 
copper, iron, and various vitamins including, B2, B3, B6, C 
and E [353]. Edible seaweeds are rich in these vitamins and 
minerals [95]. Although high iodine intake is well tolerated 
by most healthy individuals, but in some people, it may 
precipitate hyperthyroidism, hypothyroidism, goiter, and/or 
thyroid autoimmunity [354]. Excess intake of iodine through 
seafood consumption is a suspected risk factor for thyroid 
cancer [355]. Also, some seaweed is contaminated with 
arsenic, mercury, cadmium and other heavy metals that have 
a positive association with thyroid hormones in adults [356-
360]. 

ANALGESIC AND ANTI-INFLAMMATORY 
POTENTIAL 

Neuropathic pain estimates are 60% among those with 
chronic pain. Mild-to-moderate pain may be relieved by 
non-drug techniques alone [128]. 1 g of brown seaweed 
extract (85% F. vesiculosus fucoidan) daily could reduce 
joint pain and stiffness by more than 50% [361,362]. 

Association between algae consumption and a lower 
incidence of chronic degenerative diseases is also reported 
for the Japanese [363]. Carrageenan has been widely used as 
a tool in the screening of novel anti-inflammatory drugs 
[364]. Among others, Pyropia vietnamensis (formerly 
Porphyra vietnamensis) [365,366], Kappahycus alvarezii 

(formerly Eucheuma cottonii) [367], Dichotomaria obtusata 

(Rhodophyta) (Figure 17) [368], Cystoseira sedoides, 

Cladostephus spongiosumis, Padina pavonica (Figure 18) 
[369], Ecklonia cava (due to phlorotannins) (Ochrophyta, 
Phaeophyceae) [370-372], Caulerpa racemosae 

(Chlorophyta) [373], Sarcodia ceylanica [374], 
Aactinotrichia fragilis (Rhodophyta) [375], Dictyota 

menstrualis (Ochrophyta, Phaeophyceae) (Figure 19) 
[376],Gracilaria cornea [377], Gracilaria birdiae [378], 
class Phaeophyceae, Rhodophyta and Chlorophyta [379], 
Caulerpa curpressoides [380,381], Ulva lactuca 

(Chlorophyta) (Figure 20) [382], Sargassum swartzii 

(formerly Sargassum wightii) and Halophila ovalis 

(Tracheophyta) [383], Grateloupia lanceolatae 

(Rhodophyta) [384], Sargassum fulvellum and Sargassum 

thunbergii [385], Briareum excavatum (Octocoral) [386], 
Caulerpa racemosae (Chlorophyta) [387], Sargassum 

hemiphyllum (Ochrophyta, Phaeophyceae) [388], Laurencia 

obtusa (Rhodophyta) [389], Caulerpa kempfii [390], 
Caulerpa cupressoides (Chlorophyta) [391] are reported for 
their analgesic and anti-inflammatory properties. 

Figure 17. Dichotomaria obtusata, Tubular Thicket Algae. 
Source: reefguide.org 
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Figure 18. Padina pavonica. 
Source: Alchetron 

Figure 19. Dictyota menstrualis. 
Source: flowergarden.noaa.gov 

Figure 20. Ulva lactuca, Sea Lettuce. 
Source: Addictive Reef Keeping 
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ANTIMICROBIAL PROPERTIES 

Rising antimicrobial resistance is a threat to modern 
medicine. Infections with resistant organisms have higher 
morbidity and mortality, are costlier to treat and estimated to 
cause 10 million deaths annually by 2050 with global 
economic loss $100 trillion [392-394]. Lu et al. reported 
Saccharina japonica (formerly Laminaria japonica), 

Sargassum (Ochrophyta, Phaeophyceae), Gracilaria sp. and 

Pyropia dentata (formerly Porphyra dentata) (Rhodophyta) 

potentiated the activities of macrolides against E. coli [394]. 
Carragelose® (first marketed product from algae) has the 
ability to block viral attachment to the host cells and being 
effective against a broad spectrum of respiratory viruses 
[395]. Besednova et al. [396] reported that fucoidans, 
carrageenans, ulvans, lectins and polyphenols are 
biologically active compounds from seaweeds that target 
proteins or genes of the influenza virus and host components 
(Table 1). 

Table 1. Antimicrobial activity of different solvent extracts from seaweeds [397]. 

Red Seaweed Organisms 

Alsidium corallinum Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus 

Ceramium rubrum E. coli, Enterococcus fecalis, S. aureus

Ceramium virgatum Salmonella enteritidis, E. coli, Listeria monocytogenes, Bacillus cereus 

Chondrocanthus acicularis E. coli, K. pneumoniae, E. fecalis, S. aureus

Chondracanthus canaliculatus S. aureus, Streptococcus pyogenes

Chondrus crispus L. monocytogenes, Salmonella abony, E. fecalis, P. aeruginosa

C. crispus Pseudoalteromonas elyakovii, Vibrio aestuarianus, Polaribacter irgensii, 

Halomonas marina, Shewanella putrefaciens 

Ellisolandia elongata (formerly 

Corallina elongataelongata) 

B. subtilis, S. aureus, E. coli, Salmonella typhi, K. pneumoniae, Candida

albicans 

Gelidium attenatum E. coli, K. pneumoniae, E. fecalis, S. aureus

Gelidium micropterum V. parahaemolyticus, V. alcaligenes

Gelidium pulchellum E. coli, E. fecalis, S. aureus

Gelidium robustum S. aureus, S. pyogenes

Gelidium spinulosum E. coli, E. fecalis, S. aureus

Gracilaria dura V. ordalii, V. alginolyticus

Gracilaria gracilis V. salmonicida

Grateloupia livida S. aureus, E. coli, P. aeruginosa

Gracilaria ornata E. coli

Gracilaria subsecundata S. aureus, S. pyogenes

Green Seaweed Organisms 

Boodlea composita V. harveyi, V. alginolyticus, V. vulnificus, V. parahaemolyticus, V.

alcaligenes 

Bryopsis pennata V. vulnificus, V. parahemolyticus

Caulerpa lentillifera E. coli, Staphylococcus aureus, Streptococcus sp., Salmonella sp.

Caulerpa parvula V. vulnificus, V. alcaligenes

Caulerpa racemosa E. coli, S. aureus, Streptococcus sp., Salmonella sp.
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Chaetomorpha aerea Bacilus subtilis, Micrococcus luteus, S. aureus 

Chaetomorpha linum V. ordalii, V. vulnificus

Cladophora albida V. harveyi, V. alginolyticus, V. vulnificus, V. parahemolyticus, V.

alcaligenes 

Cladophora glomerata V. fischeri, V. vulnificus, V. anguillarum, V. parahemolyticus

Brown Seaweed Organisms 

Chnoospora implexa S. aureus, S. pyogenes

Cladophora rupestris E. coli, S. aureus, P. aeruginosa, V. harveyii, V. parahemolyticus, V.

alginolyticus 

C. rupestris E. coli, S. aureus, P. aeruginosa, V. harveyii, V. parahemolyticus, V.

alginolyticus 

C. rupestris E. coli, S. aureus, P. aeruginosa, V. harveyii, V. parahemolyticus

Colpomenia sinuosa S. aureus, S. pyogenes, B. subtilis, S. aureus, E. coli, S. typhi, K.

pneumoniae, C. albicans 

Colpomenia tuberculata S. aureus, Sreptococcus pyogenes

Cystoseira osmundacea S. pyogenes

Cystoseira trinodis S. aureus, B. subtilis, E. coli, P. aeruginosa

Dictyopteris delicatula S. aureus, S. pyogenes

Dictyopteris undulata S. aureus, S. pyogenes

Dictyota dichotoma S. aureus, B. subtilis, E. coli, P. aeruginosa

Dictyota flabellata S. aureus, S. pyogenes

Dictyota indica S. aureus, B. subtilis, E. coli, P. aeruginosa

Dictyota sp. S. aureus, Enterococcus fecalis, P. aeruginosa

Ecklonia bicyclis (formerly 

Eisenia bicyclis) 

S. aureus, S. epidermidis, Propionibacterium acnes

OTHER HEALTH ISSUES 

Walsh et al. reported osteogenic potential of brown 
seaweeds Laminaria digitata and Ascophyllum nodosum 
[398]. Seaweed contains several compounds with 
antioxidant properties (phlorotannins, pigments, tocopherols, 
flavonoids, polyphenols and polysaccharides) [399]. 
Antioxidant properties of Fucus vesiculosus and 
Ascophyllum nodosum (due to phlorotannins) [399], 
Turbinaria conoides (2H-pyranoids) [400], Ulva clathratae 
(Chlorophyta) (phenolics and flavonoid contents) [401], 
Bifurcaria bifurcate (Figure 21) (diterpenes eleganolone 
and eleganonal) [402], Cystoseira spp. (phenolic 
constituents) [119], Sargassum siliquastrum (Ochrophyta, 
Phaeophyceae) (phenolic compounds, ascorbic acid) [403], 
Ulva compressa (Chlorophyta) (phenolic contents) [404], 

Saccharina japonica (polysaccharides) and Sargassum 

horneri (Ochrophyta, Phaeophyceae) (phenolic contents) 
[405,406], Halophila ovalis (Figure 22) and Halophila 

beccarii (Tracheophyta) (flavonoids) [407,408], Cystoseira 

sedoides (Ochrophyta, Phaeophyceae) (mannuronic acid 
than guluronic acid) [369], [409,410], Caulerpa 

peltatapeltate (Chlorophyta), Gelidiella acerosa 
(Rhodophyta), Padina gymnospora and Sargassum wightii 
(phenols and flavonoids) [411], Ecklonia cava Kjellman 
(polyphenols) [412,413], Undaria pinnatifida (Ochrophyta, 
Phaeophyceae) (phlorotannins) [414] are well reported. Most 
other medicinal effects are mainly due to presence of these 
antioxidants. Mesripour et al. [415] reported antidepressant 
effects of Sargassum plagyophylum. Ecklonia bicyclis, 
Tribulus terrestris (Magnoliophyta) improved sexual and 
ejaculation function and sexual QoL [416]. Chronic pain is 
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often associated with sexual dysfunction, suggesting that 
pain can reduce libido [416]. However, red algae (especially 
sea moss/Gracilaria spp.), Hypnea musciformis 
(Vermifuge), Monostroma nitidum (formerly Porphyra 

crispata) are known to have aphrodisiac properties [417-
419]. Thrombotic diseases are reported to contribute to 30% 
early deaths globally [420]. Ulva rigida [421], Udotea 

flabellum (Chlorophyta) (Figure 23) [422], ulvans and their 
oligosaccharides [380], Nemacystus decipienus, Undaria 

pinnatifida (Ochrophyta, Phaeophyceae) [423], Pyropia 

yezoensis (formerly Porphyra yezoensis) (Rhodophyta), 
Coscinoderma mathewsi (Porifera), Sargassum micranthum, 
Sargassum yezoense, Canistrocarpus cervicornis (Figure 
24), Dictyota menstrualis, Ecklonia Kuromekurome, 
Ecklonia spp. (Ochrophyta, Phaeophyceae) [424] have 
shown anticoagulant and anti-thrombotic properties. He et 

al. reported that seaweed consumption may be a dietary 
predictor of elevated MEP, MiBP and ∑DEHP 
concentrations among pregnant women [425]. Urolithiasis 
affects approximately 10% of the world population and is 
strongly associated with calcium oxalate (CaOx) crystals. 
Gomes et al. reported anti-urolithic effect of green seaweed 
Caulerpa cupressoides [426]. Grateloupia elliptica has the 
potential to treat alopecia via inhibitory activity against 
Malassezia furfur (formerly Pityrosporum ovale) (Fungi, 
Basidiomycota) [427]. Strong fungus-inhibitory effects of 
Ochtodes secundiramea and Laurencia dendroidea 
(Rhodophyta) extracts were observed Banana and Papaya 
during storage [428]. Marine macroalgae are a promising 
source of diverse bioactive compounds with applications in 
the biocontrol of harmful cyanobacteria blooms [429]. 

Figure 21. Bifurcaria bifurcate. 
Source: Aphotomarine 

Figure 22. Halophila ovalis, Spoon Seagrass. 
Source: CoMBINe 
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Figure 23. Udotea flabellum. 
Source: Insta Phenomenons 

Figure 24. Canistrocarpus cervicornis. 
Source: Backyard Nature 

Figure 25. Grateloupia elliptica. 
Source: Papago.naver.com 
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CONCLUSION 

Seaweeds are well-known for their exceptional capacity to 
accumulate essential minerals and trace elements needed for 
human nutrition, although their levels are commonly quite 
variable depending on their morphological features, 
environmental conditions, and geographic location. Food 
security, legislative measures to ensure monitoring and 
labeling of food products are needed. Being subject to 
environmental influences from their habitat, seaweeds also 
entail water-borne health risks such as organic pollutants, 
toxins, parasites, and heavy metals. Having in mind the 
serious environmental problems raised in coastal areas by 
urbanization and industrialization, the concentration of toxic 
elements in edible macroalgae is now a growing concern, 
mainly considering their increased consumption in a 
Western diet. Although many studies demonstrated their 
therapeutic value in various ailments, but most of them have 
been performed on experimental animals. Proper labeling is 
necessary along with instructions of the content, source and 
use. Furthermore, controlled human intervention studies 
with health-related end points to elucidate therapeutic 
efficacy are required. 
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