Stem Cell Research & Therapeutics

SCRT, 5(1): 167-169 www.scitcentral.com

ISSN: 2474-4646

Mini Review: Open Access

Half-Metallic Ferromagnetic Double Perovskites as Promising Materials for Spintronics and Energy Devices

M Musa Saad HE

*Department of Physics, College of Science and Arts, Qassim University, Muthnib 51931, Saudi Arabia.

Received October 01, 2019; Revised October 30, 2019; Accepted November 01, 2019

ABSTRACT

Double perovskite-like materials which include transition elements have relevance due to the technological perspectives in electronics and spintronics engineering. In this study, we report the investigations of the electronic and magnetic properties of Sr_2CrWO_6 and Sr_2FeReO_6 by using the first-principles density functional theory (DFT). The electronic and magnetic results predict proper half-metallic (HM) and ferromagnetic (FM) ground states in Sr_2CrWO_6 and Sr_2FeReO_6 with total magnetic moments of 2.0 and 3.0 μ_B , respectively. Therefore, these materials seem to possess HM and FM properties, making them useful candidates for applications in spintronics and energy devices.

Double perovskite materials, which include transition elements, are relevant because of the technological perspectives in electronics and spintronics engineering. In this study, we report the research on the electronic and magnetic properties of Sr_2CrWO_6 and Sr_2FeReO_6 using first density functional density theory (DFT). The electronic and magnetic results predict suitable semi-metallic (HM) and ferromagnetic (FM) ground states in Sr_2CrWO_6 and Sr_2FeReO_6 with total magnetic moments of 2.0 and 3.0 μ B, respectively. Therefore, these materials appear to possess HM and FM properties, making them useful candidates for applications in spintronics and energy devices.

The double perovskite materials, here include transition elements, are relevant because of the technological perspectives in electronics and spintronics engineering. In this study, we report the research on the electronic and magnetic properties of Sr₂CrWO₆ and Sr₂FeReO₆ using first density functional density theory (DFT). The electronic and magnetic results predict appropriate semi-metallic (HM) and ferromagnetic (FM) ground states in Sr₂CrWO₆ and Sr₂FeReO₆ with magnetic total moments of 2.0 and 3.0 μB, respectively. Therefore, these materials appear to possess HM and FM properties, making them useful candidates for applications in spintronics and energy devices.

INTRODUCTION

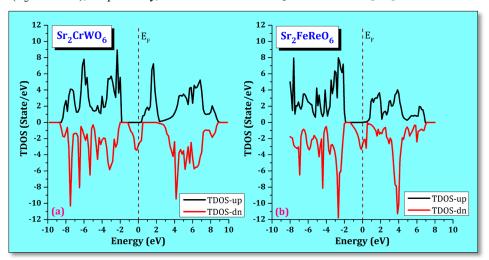
Respected of their requests in spintronics and energy devices, half-metallic (HM) double perovskites are appropriate based on their unique features; (i) full spinpolarization at the Fermi level (E_F), (ii) quantization of spin magnetic moment, and (iii) zero spin susceptibility. Some transition-metal double perovskites (TMDPs) with chemical formula A₂MNO₆ (A=alkali-earth; MN=transition-metals) have been recently designated to exhibit ferromagnetism (FM) and HM with (SP=100%) of conduction electrons at the E_F, making them promising candidates as materials suitable for spintronics technologies such as magnetic recorders, magnetic sensors, computer memories, and solar cell devices. Also, very interesting properties are detected in TMDPs family, such as magnetoresistance (MR) in (Sr₂FeMoO₆) and (Sr₂FeReO₆) [1,2], HM above roomtemperature (RT) in (A₂FeMoO₆; A=Ca, Sr, Ba) [3,4] and (Sr₂CrMoO₆) [5,6] and high Curie temperature (T_C) [1,7]. The ordered **TMDPs** (Sr₂FeMoO₆),(Sr₂FeReO₆), (Sr₂CrMoO₆), (Sr₂CrWO₆), etc., are among the very few materials that allow conduction electrons of one spin direction to move through them, while blocking the electrons with opposite spin direction. In this study, the structural, electronic and magnetic properties of two Sr-based double perovskites (Sr₂CrWO₆ and Sr₂FeReO₆) are reported by using the density functional theory (DFT) calculations within the exchanged and correlated local spin density approximation (LSDA+U).

CRYSTAL STRUCTURES

The ideal crystal structure of Sr_2CrWO_6 and Sr_2FeReO_6 can be viewed as an ordered arrangement of corner-sharing $Cr(Fe)O_6$ and $W(Re)O_6$ octahedra (6-coordinate system), alternating along the three directions of the crystal space, with the large cations Sr^{2+} (12-coordinate system) occupying

Corresponding author: Musa Saad HEM, Department of Physics, College of Science and Arts, Qassim University, Muthnib 51931, Saudi Arabia, Email: 141261@qu.edu.sa

Citation: Saad HEMM. (2020) Half-Metallic Ferromagnetic Double Perovskites as Promising Materials for Spintronics and Energy Devices. Stem Cell Res Th, 5(1): 167-169.


Copyright: ©2020 Saad HEMM. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

the cavities in between these octahedra. Sr_2CrWO_6 and Sr_2FeReO_6 crystallize in cubic structure with (Fm-3m) symmetry and Cr^{3+} – W^{5+} and Fe^{3+} – Re^{5+} systems arranged in rock-salt ordering. Their lattice parameters are a=7.8587 Å and a=7.8858 Å, respectively, around the ideal values (a=8.0 Å). Each Cr^{3+} (W^{5+}) or $Fe^{3+}(Re^{5+})$ is coordinated by $W^{5+}(Cr^{3+})$ or $Re^{5+}(Fe^{3+})$ and each has an O^{2-} in between forming $Cr^{3+}/Fe^{3+}O^{2-}_6$ and $Re^{5+}O^{2-}_6$ octahedra with bondlengths of $Cr^{3+}/Fe^{3+}O^{2-}=1.981$ Å/1.949 Å and $Re^{5+}-O^{2-}=2.016$ Å/1.928 Å. The atomic positions in the unit cell are Sr^{2+} at 8c ($\frac{1}{4}$, $\frac{1}{4}$,

HALF-METALLIC PROPERTIES

Figure 1 shows the total densities of states (TDOSs) of Sr_2CrWO_6 and Sr_2FeReO_6 with an energy-gap in spin-up of (E_g =2.14 eV) and (E_g =2.31 eV), respectively, falls between

the occupied Cr/Fe (3d) and unoccupied W/Re (5d) states. From the partial densities of states (PDOSs) in Figure 2, it can be see that the spin-down conduction states are created mainly from the contributions of W (5d) and Re (5d) states with tiny contributions come from Cr (3d) and Fe (3d) states, respectively. The small variation between two TDOSs is due to the extra electron in Re (5d²) than in W (5d¹). Also, since the E_g produces from the antiferromagnetic coupling between Cr/Fe (3d) and W/Re (5d) states (Figure 2), their peaks emerge as Cr/Fe $(3d)_{\uparrow}$ and W/Re $(5d)_{\downarrow}$ near E_F . Therefore, the spin-up electrons are insulating while the spin-down ones are metallic, resulting in SP = 100% of their conduction electrons at the E_F. Accordingly, Sr₂CrWO₆ and Sr₂FeReO₆ allow electrons of spin-down direction to move through them as though they were passing through a regular metal, while blocking electrons with spin-up direction. The obtained results of Sr₂CrWO₆ and Sr₂FeReO₆ are agreement with previous results [8,9].

Figure 1. TDOSs for (a) Sr₂CrWO₆ and (b) Sr₂FeReO₆, (E_F=0.0 eV).

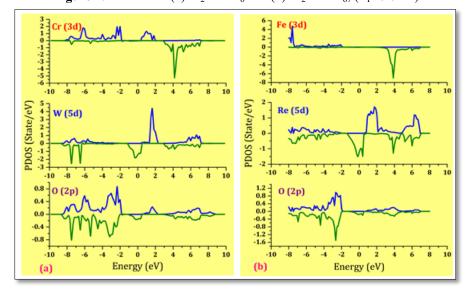


Figure 2. PDOSs for (a) Sr₂CrWO₆ and (b) Sr₂FeReO₆.

FERROMAGNETIC PROPERTIES

The most contributions to the electronic and magnetic structures of Sr₂CrWO₆ and Sr₂FeReO₆ come from the super-exchange interaction (SEI) between the energetic orbitals of 3d and 5d in $Cr^{3+} (3d^3)/Fe^{3+} (3d^5)$ and W $(5d^1)/Re$ (5d²), respectively. The spin configurations of ground states in two compounds are stabilized in Cr^{3+} (3d³; t_{2g}^{3} $\uparrow e_{g}^{0}$ \uparrow ; S=3/2 μ_{B}) and W^{5+} (5d¹; t_{2g}^{1} $\uparrow e_{g}^{0}$ \uparrow ; S=1/2 μ_{B}); Fe^{3+} (3d⁵; t_{2g}^{3} $\uparrow e_{g}^{0}$ \uparrow ; S=5/2 μ_{B}) and Re^{5+} (5d²; t_{2g}^{2} $\uparrow e_{g}^{0}$ \uparrow ; S=2/2 μ_{B}). Thus, the ferromagnetic structures can be assigned primarily to the SEI between Cr/Fe and W/Re via intermediated O atoms in 180° long-chain paths; Cr (3d-t₂ $_{g}^{3}$ \uparrow e_{g}^{0} \uparrow)–O (2p $_{\pi}$)–W (5d-t₂ $_{g}^{1}$ \downarrow) and Fe (3d-t₂ $_{g}^{3}$ \uparrow e_{g}^{2} \uparrow)–O (2p $_{\pi}$)–Re (5d-t₂ $_{g}^{2}$ \downarrow). Where, the band filling of spin-up and spin-down sub-orbitals in t2g and e_g govern these interactions. The calculated magnetic moments for Sr_2CrWO_6 are $M_{Cr}=2.919 \mu_B$, $M_W=-1.044 \mu_B$ with a total magnetic moment per unit cell of $M_{Tot.}$ =1.878 $\mu_B,$ in agreement with the LSDA+U value $M_{Tot.}\!=\!2.01~\mu_B$ [10,11] and theoretical (S=2 μ_B). For Sr₂FeReO₆, M_{Fe}=4.578 μ_B , M_{Re} =-1.344 μ_B and $M_{Tot.}$ =3.184 μ_B , also in agreement to the LSDA+U result, M_{Tot} =3.06 μ_B [8] and theoretical (S=3 μ_B). The obtained 100% SP, HM and FM features in Sr₂CrWO₆ and Sr₂FeReO₆ makes them suitable for many potential applications like spintronics, where the spin currents are utilized as well as charge currents.

REFERENCES

- Kobayashi KI, Okuda T, Tomioka Y, Kimura T, Tokura Y, et al. (2000) Possible percolation and magnetoresistance in ordered double perovskite alloys Sr₂Fe(W_{1-x}Mo_x)O₆. Magn Mater 218: 17-24.
- Kato H, Okuda T, Okimoto Y, Tomioka Y, Oikawa K, et al. (2004) Structural and electronic properties of the ordered double perovskites A₂MReO₆ (A=Sr, Ca; M=Mg, Sc, Cr, Mn, Fe, Co, Ni, Zn). Phys Rev B 69: 184412.
- Sarma DD, Mahadeva P, Saha-Dasgupta T, Ray S, Kumar A (2000) Electronic structure of Sr₂FeMoO₆. Phys Rev Lett 85: 2549.
- Isayama A, Kadota S, Yui H, Sasagawa T (2010) Chemical pressure effects on magnetic properties of A₂FeMoO₆ (A=Ca, Sr and Ba). Mater Sci Eng B 173: 44-46.
- Bonilla CM, Landinez DA, Arbey J, Vera Lopez E, Roa-Rojas J (2007) Half-metallic behavior and electronic structure of Sr₂CrMoO₆ magnetic system. Phys B 398: 208-211.
- Musa Saad HEM (2014) Structural, electronic and magnetic properties of electron-doped double perovskite Ba_{2-x}LaxCrMoO₆ (x=0, 1, 2): From LMTO-PLW + (LSDA+U) technique. J Alloys Compd 587: 652-658.

- Li QF, Zhu XF, Chen LF (2008) First-principles investigations of disorder effects on electronic structure and magnetic properties in Sr₂CrMoO₆. J Phys Condens Matter 20: 25.
- 8. Jeng HT, Guo GY (2003) First-principles investigations of orbital magnetic moments and electronic structures of the double perovskites Sr₂FeMoO₆, Sr₂FeReO₆ and Sr₂CrWO₆. Phys Rev B 67: 094438.
- Hua Wu (2001) Electronic structure study of double perovskites A₂FeReO₆ (A=Ba, Sr, Ca) and Sr₂MMoO₆ (M=Cr, Mn, Fe, Co) by LSDA and LSDA+U. Phys Rev B 64: 125126.
- Philipp JB, Majewski P, Alff L, Gross R, Graf T, et al. (2003) Structural and doping effects in the half-metallic double perovskite A₂CrWO₆ (A=Sr, Ba and Ca). Phys Rev B 68: 144431.
- 11. Vaitheeswaran G, Kanchana V, Delin A (2006) Electronic structure of the ferromagnetic double-perovskites Sr₂CrReO₆, Sr₂CrWO₆ and Ba₂FeReO₆. J Phys Confer Ser 29: 50-53.