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ABSTRACT 
Multiple myeloma (MM) is characterized by immune dysfunctions including defective dendritic cell (DC) and T cell 
functions, which are associated with poor clinical outcomes. Therefore, drugs that improve the immune status are considered 
as effective therapeutic strategies for MM. Lenalidomide (LEN), as an immunomodulatory drug (IMiD), is an important 
backbone drug for MM treatment to quantitatively and qualitatively enhance several immune cell types. Plasmacytoid DCs 
(pDCs) represent a major source of type-I interferons (IFNs) that not only directly induce cell arrest, but also activate 
immune effectors to induce clearance of pathological cells in protective anti-tumor and anti-viral immunities. Some functions 
of IFNs overlap with those of IMiDs. Thus, pDCs are an important cellular component for recovery of the immune status by 
MM therapy using IMiDs. This review focuses on the immunological link between IMiDs and pDCs in the immune 
dysfunctions of MM. pDCs are localized frequently in bone marrow (BM) of MM patients and BM-infiltrating pDCs display 
unfavorable functions to prolong survival of MM cells by their reduced ability to promote T-cell proliferation in the BM 
milieu. However, CpG-oligodeoxynucleotide (ODN) stimulation, while triggering the IFN response, restores T-cell responses 
of pDCs and represses MM cell growth. Proteasome inhibitor bortezomib suppresses type-I IFN production by pDCs. 
Moreover, non-uniformity of LEN functions against pDCs in recent reports might be attributed to different experimental 
settings. However, LEN at the clinical concentration range might not, at least, inhibit strongly, but sustain the ability of pDCs 
to produce type-I IFNs in MM treatment. These effects may explain the low incidence of herpes zoster viral infection 
observed during LEN treatment compared with bortezomib treatment. IMiDs orchestrate the activities of wide varieties of 
immune cell types, including sustaining pDC functions, thereby leading to amplification of a positive-immune axis to 
eliminate MM cells. 
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INTRODUCTION 

Multiple myeloma (MM) is a multistep malignancy of 
plasma cells in bone marrow (BM), leading to bone 
destruction, renal dysfunction and disruption of normal BM 
functions reflected by anemia. MM is generally regarded as 
incurable. However, treatment of MM has been evolving 
with the introduction of new drugs such as 
immunomodulatory drugs (IMiDs), including lenalidomide 
(LEN) and pomalidomide (POM), proteasome inhibitors and 
antibody drugs. Thus, the 5-year survival rate has increased 
gradually because of new drug development over the last 
decade. 

MM is characterized by immune dysfunctions, including 
defective dendritic cell (DC) and T cell functions, which are 
associated with poor clinical outcomes. 
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IMiDs enhance a wide variety of immune cell types 
quantitatively and qualitatively and are important backbone 
drugs for MM treatment. Plasmacytoid DCs (pDCs) 
represent the major source of type-I interferons (IFNs) that 
not only directly induce cell cycle arrest, but also activate 
immune effectors to eliminate pathological cells in 
protective anti-tumor and anti-viral immunities. Because 
some functions of type-I IFNs overlap with those of IMiDs, 
pDCs are an important cellular component as an additional 
cellular target of IMiDs for recovery of the immune status 
by MM therapy. This review focuses on pDC functions in 
the immune dysfunctions of MM and immunological 
cooperation of IMiDs and pDCs in MM treatment. 

MM involves immune dysfunctions 

MM is characterized by immune dysfunctions [1-3]. 
Aberrant production and release of monoclonal proteins 
from MM cells into the bloodstream and urine causes 
reduced normal immunoglobulin secretion and increased 
susceptibility to infection. In terms of other cellular 
functions, reduced T-cell immunity has been reported during 
MM disease progression [4,5], such as an increased number 
of regulatory T cells (Tregs) associated with poor clinical 
outcomes [6,7]. PD-L1 and PD-1 expression are increased in 
MM cells and immune effector cells [i.e., cytotoxic T 
lymphocytes (CTLs) and natural killer (NK) cells], 
respectively, in MM patients [1,8]. In addition, DCs are 
pivotal in orchestrating both innate and acquired immunities 
as a commander of the immune regulatory system and a 
series of analyses have clarified the functional plasticity of 
DCs to induce Th1 or Th2 response. Recent studies have 
demonstrated several defective immunological properties in 
DCs of MM patients with a lack of CD80 and CD86 
molecules, functional inability of antigen presentation, and 
accumulation of both immature and inactivated DCs in BM 
[2,3]. Other mechanisms lead to tumor escape and immune 
tolerance, which are apparently dependent on high release of 
transforming growth factor-β, interleukin (IL)-10, IL-6, 
vascular endothelial growth factor, and FAS/FASL in the 
myeloma BM environment, resulting in DC dysfunction in 
T-cell activation and proliferation [9]. These findings
explain, at least in part, the defective immune functions in
MM patients, which are associated with a poor prognosis.

Functions of plasmacytoid DCs in MM patients 

In humans, DCs consist of two major subsets: CD11c+ 
myeloid DCs and pDCs. They play distinct roles in innate 
and acquired immunities by their expression of specialized 
cytokines and molecules.  

Although the essential function of DCs is to prime naïve and 
memory T cells to differentiate into inflammatory Th1, Th2, 
or Th17 cells in acquired immunity, pDCs paradoxically 
have an intrinsic capacity to prime naive T cells to 
differentiate into IL-10-producing Tregs at a mature stage 
[10]. pDCs suppress inflammatory responses against 

pathogens [11] and allergens [12] and promote oral tolerance 
[13] and engraftment of hematopoietic stem cells [14] as
well as vascularized grafts [15]. Immunosuppressive effects
of tumor-infiltrating pDCs have been demonstrated in solid
tumors [16,17] and pDC infiltration correlates with poor
clinical disease outcomes of breast cancer [18]. Furthermore,
among hematopoietic malignancies, chronic myeloid
leukemia patients with high CD86+ pDC counts have a
higher risk of relapse after treatment discontinuation [19].
Additionally, in MM patients, pDCs induce growth and
prolong survival of MM cells in the milieu of pathological
BM [20]. Thus, pDCs have been implicated in contribution,
at least in part, to immune dysfunctions due to the reduced
ability of pDCs to induce T cell proliferation in BM [20] and
peripheral blood [21] of MM patients.

In addition to the antigen-presenting function in acquired 
immunity, pDCs have a unique aspect as a type-I IFN-
producer in innate immunity. Although they comprise only a 
small fraction of peripheral blood mononuclear cells 
(PBMCs), pDCs represent a major source of type-I IFNs in 
the blood and lymphoid tissues of both humans and mice 
[22,23]. Human pDCs respond to viral infection through 
their selective expression of toll-like receptor (TLR)7 and 
TLR9 [24], which sense viral RNA and DNA, respectively, 
and dedicate a large proportion of their transcriptional 
machinery to producing type-I IFNs [25]. Accumulating 
evidence suggests that type-I IFNs enhance immune effector 
cells [26-28], leading to enhancement of the entire immune 
system including CTLs, NK cells, neutrophils, and 
monocytes. Thus, pDCs exert protective anti-viral 
inflammatory effects through secretion of vast amounts of 
type-I IFNs that not only directly inhibit viral replication, 
but also activate an immune network of cytotoxic effector 
cells to induce clearance of infected cells. These pDC/type-I 
IFN-mediated immune processes may contribute to both 
tumor cell cycle arrest and activation of immune effectors to 
eliminate several types of malignancies. Indeed, type-I IFNs 
trigger direct anti-tumor cytotoxicity in B-cell malignancies 
by inducing apoptosis [29] and inhibit cell proliferation 
[30,31]. Furthermore, recombinant IFN- has shown activity 
against B-cell hematologic neoplasms by immune activation 
of cytotoxic effector cells [32]. The efficacy of recombinant 
IFN- in patients with MM was reported before drug 
development of IMiDs and proteasome inhibitors [32,33]. 
Type-I IFN-based maintenance regimens, despite some 
conflicting results, have also shown some clinical benefits 
[34]. TLR stimulation by CpG-ODNs to induce large 
amounts of type-I IFNs restores the in vitro T-cell response 
of pDCs from MM patients and blocks MM cell line growth 
[20]. In this context, pDCs may be a target of 
immunotherapy to substitute for recombinant IFN treatment. 

Numbers of plasmacytoid DCs in MM patients 

The number of immune cells in MM patients has been 
reported to be small. However, no conclusion has been  
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reached regarding blood DC numbers in MM patients. One 
report showed a decreased number of blood pDCs in MM 
patients compared with healthy donors [21] and pDC 
depletion with downregulation of the IKZF1 protein level by 
LEN treatment [35], whereas three other studies found that 
blood pDC numbers in MM patients were nearly identical to 
those in normal donors [2,20,36]. Studies have shown that 
the MM genome is complex, and that MM patients are 
extremely diverse with genomic heterogeneity [37]. 
Accordingly, the controversy about the blood pDC numbers 
in MM patients might be attributed to the fact that all of 
these studies were conducted with a small number of cases 
with heterogeneity of the disease status or progression phase. 

One of these studies has also evaluated the distribution of 
pDCs in MM patients [20]. Although there is no significant 
difference in pDC numbers between BM and peripheral 
blood in healthy donors, increased pDCs are observed in BM 
compared with peripheral blood in MM patients. The other 
possibility for the non-uniformity of the pDC number is 
migration from blood to BM due to different MM 
progression phase. Considering the defective function of 
pDCs in BM of MM patients in regards to the ability for T 
cell proliferation, frequent localization of pDCs in BM may 
cause the immune dysfunctions in MM. 

IMiDs enhance immune functions 

LEN and POM have both direct tumoricidal and indirect 
immunomodulatory effects. Both drugs are important 
backbone drugs for MM and continuous treatment with LEN 
until disease progression confers a survival benefit for MM 
patients [38]. The immune dysfunctions are associated with 
a poor prognosis of MM patients and clinical outcomes can 
be improved by recovery of the immune status [6,7]. 
Therefore, immunotherapies or drugs that improve the 
immune status are considered to be effective therapeutic 
strategies, making IMiDs backbone drugs for MM because 
of their immunopotentiating activity as described below. 
LEN has been shown to improve humoral immunity with 
non-neoplastic globulin recovery in MM patients, especially 
patients exhibiting with long-term therapeutic benefits [39]. 
Furthermore, patients with humoral responses improved by 
LEN have better outcomes of both PFS and OS [39,40]. 
Considering that myeloma is a malignancy of plasma cells 
and based on the pathology of humoral immune dysfunction, 
restoring humoral immunity by IMiDs treatment may 
improve clinical outcomes. 

Studies have revealed a wide array of immune cell types 
targeted by IMiDs. LEN and POM promote the proliferation 
of some immune effector cell types in vivo. The total 
percentage of proliferating S-phase CD4+ T cells, CD8+ T 
cells, and NK cells increases after administration of LEN in 
MM patients [41]. In addition to this quantitative 
enhancement, several studies have shown that LEN induces 
qualitative activation of several immune cell types. For 

example, LEN augments NK cell cytotoxicity and CTL 
activity [42-47], and inhibits the proliferation and functions 
of Treg cells [48,49]. In addition, POM increases cytotoxic 
effector cells (CTLs/NK cells) quantitatively and 
qualitatively in vivo [50]. 

Moreover, LEN downregulates PD-L1 on primary MM cells 
and PD-1 on NK cells and CTLs of MM patients, leading to 
enhanced immune responses induced by immune checkpoint 
blockade [1,8]. Thus, the function of IMiDs, which 
facilitates the attack of MM cells by activated immune 
effectors, is supported by the elaborate immunostimulatory 
effect, which is relevant to the treatment of MM patients 
with immune dysfunctions. Some of these functions in the 
immune system appear to overlap with IFN functions. 
Therefore, validating the effect of IMiDs to target the pDC-
IFN pathway might be useful and may provide a rationale 
for the clinical use of IMiDs in MM patients. 

IMiDs for plasmacytoid DC functions 

There is evidence of immunomodulatory activities of LEN 
and POM in mouse conventional DCs [47,51] and a 
synergistic effect of DC vaccination in murine models of 
MM [52-54] and colon cancer [55]. In this context, DCs 
would be important cellular components for recovery of the 
immune status by MM treatment, especially therapy using 
IMiDs. Several recent studies have elucidated the functions 
of IMiDs in human DC subsets [35,36,56,57], especially 
pDCs [20,35,36]. These findings provide new insights into a 
possible mechanism through which IMiDs operates as a 
pleiotropic immunomodulator in MM patients. 

Cytlak. et al. demonstrated that ikaros family zinc finger 1 
(IKZF1) deficiency induces pDC depletion using PBMCs 
from individuals carrying an IKZF1 mutation [35]. They 
also reported that the absolute pDC count showed a 
significant positive correlation with the IKZF1 protein level 
in MM patients treated with LEN, which induces 
proteasomal degradation of IKZF1, and that IKZF1 
deficiency or LEN treatment induced less secretion of IFN- 
by pDCs. They concluded that LEN has a negative effect on 
pDC functions and differentiation. In contrast, we have 
recently demonstrated that LEN significantly enhances IFN-
 production by pDCs stimulated with low concentrations of 
CpG-ODN, but not an optimal high concentration [36]. 
Clinical pharmacokinetics show that clinical peak plasma 
LEN concentrations of MM patients administered 10 or 25 
mg oral LEN are around 1.2 M (311 ng/mL) and 2.7 M 
(714 ng/mL), respectively [58]. The former study showed 
that IFN--producing cell numbers were decreased modestly 
among pDCs treated with increasing concentrations (0.1, 1 
or 10 μM) of LEN. Meanwhile, the latter study showed that 
0.1–3 μM LEN (covering the clinical in vivo plasma 
concentration range of oral LEN administration) did not 
affect pDC survival, although pDCs were susceptible to the 
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cytotoxic effects of proteasome inhibitor bortezomib. 
Moreover, IFN- production by pDCs in response to CpG-
ODN 2216 was not decreased significantly after exposure to 
a clinical concentration range of LEN (0.01-3 μM). 

In the former experimental setting, a TLR agonist cocktail 
consisting of CpG-ODN, poly (I: C), CL075, and LPS was 
added to total PBMCs, and then the number of cytokine-
producing cells was analyzed by intracellular staining of 
each cell type [35]. This was a condition under which pDCs 
were affected by cytokines produced by other cell types, 
such as IL-10 and TNF. Furthermore, CpG-ODN 2216 was 
added at a very high concentration of 7.5 uM. In the latter 
experimental setting, pDCs purified from PBMCs were 
applied to an IFN- production assay. In addition, to address 
the possibility that LEN could not further enhance IFN-α 

production by pDCs because of exhaustion following 
maximal CpG-ODN 2216 stimulation, a low and suboptimal 
concentration of CpG-ODN 2216 (0.1 µM) was examined to 
stimulate pDCs [36]. Although pDCs rapidly produce vast 
amounts of type-I IFNs following stimulation by viruses or 
CpG-ODN [22], pDCs are incapable of mounting a 
secondary type-I IFN response for further stimulation [25]. 
In this context, pDCs do not retain a sufficient capacity to 
further produce type-I IFNs by the maximal response to 
optimal stimulation. The latter experiments showed that 
LEN promotes the residual capacity of pDCs to produce 
IFN- by suboptimal stimulation. Thus, LEN at a clinical 
concentration range might, at least, not inhibit strongly, but 
could possibly sustain the ability of pDCs to produce type-I 
IFNs in MM treatment. 

  Figure 1. Immune cooperation of IMiDs and pDCs in MM treatment. IMiDs (lenalidomide and pomalidomide) have direct 
tumoricidal effects, but do not damage pDCs. In addition, IMiDs at a clinical concentration range might not, at least, inhibit 
strongly, but possibly retain or enhance the ability of pDCs to produce type-I IFNs that not only directly inhibit cell 
replication, but also activate an immune network of cytotoxic effector cells to eliminate MM cells. The immunomodulatory 
functions of IMiDs in MM cells might work synergistically with the effect of pDC-derived type-I IFNs to improve the 
immune status of MM immune dysfunctions. In contrast to IMiDs, proteasome inhibitor bortezomib suppresses immune 
responses and type-I IFN production by pDCs. Multiple myeloma (MM), dendritic cells (DCs), immunomodulatory drugs 
(IMiDs), Lenalidomide (LEN), pomalidomide (POM), Plasmacytoid DCs (pDCs), natural killer (NK), interferons (IFNs), 
bone marrow (BM). 

Clinical relevance of IMiDs regarding pDC functions 

pDCs as antigen-presenting cells with a tolerogenic function 
are considered to play a partial role in the immune 
dysfunctions of MM patients as mentioned above. However, 

pDCs trigger activation of the immune system as a part of 
their anti-viral and anti-tumor responses through type-I IFN 
production. Type-I IFNs and IMiDs appear to have some 
overlapping functions in the immune system. Thus, 
immunomodulatory functions of IMiDs in MM cells might 



SciTech Central Inc. 

J Blood Transfusions Dis (JBTD) 140 

J Blood Transfusions Dis, 3(1): 136-143  Ito T 

work synergistically to mediate the effect of type-I IFNs to 
enhance cellular and humoral immunities [42-49]. In this 
sense, considering the capability of IMiDs to activate 
immune effectors without strong inhibition of pDC functions 
or to potentially enhance the ability of pDCs to produce 
IFN-by suboptimal stimulation IMiDs may function as 
preservers of endogenous IFN and are therefore positive 
immunomodulators that activate surrounding immune cells 
in addition to their direct tumoricidal effects (Figure 1).  

Thus, the immunological link between IMiDs and pDCs may 
participate in the immune processes in MM during treatment 
with IMiDs. In contrast to IMiDs, proteasome inhibitor 
bortezomib has been shown to suppress immune responses 
and type-I IFN production by pDCs [36, 59-61]. Consistent 
with the function of IMiDs to preserve endogenous type-I 
IFNs, there is relatively low incidence of herpes zoster viral 
infection during LEN treatment compared with bortezomib 
treatment [62-64]. Continuous treatment with low-dose LEN 
as a maintenance therapy after stem cell transplantation 
contributes to better survival of MM patients [65, 66]. The 
clinical pharmacokinetics of LEN shows a gentle curve from 
the peak plasma concentration. LEN at 10 mg administered 
orally to MM patients results in an approximate clinical peak 
plasma concentration of 1.2 µM [58]. Even at a low 
concentration (0.1–1.0 M, equivalent to the clinical plasma 
concentration range resulting from oral administration of 10 
mg LEN), LEN sustains IFN- production by pDCs [36]. 
This finding suggests that low-dose LEN (i.e., 10 mg oral 
administration) functions as an immunostimulator during 
maintenance therapy and sustains the immune status. This 
could be one of the advantages of long-term continuous 
therapy with low-dose LEN. 

CONCLUSION 

IMiDs orchestrate the activities of a wide variety of both 
innate and acquired immune cell types, including pDC 
functions, leading to amplification of a positive immune axis 
able to eliminate MM cells (Figure 1). Immunotherapies or 
drugs that improve the immune status are considered as 
effective therapeutic strategies, making IMiDs backbone 
drugs for MM. 
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