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ABSTRACT 
The computational proficiencies put on in this screening are QSAR, with fraction of variance r2 = 0.8499 and LOO-CV q2 = 
0.5008. 3D-QSAR (CoMFA and CoMSIA) and structure-based approach (molecular dynamics simulations assisted molecular 
docking study) were applied for the identification of important features of iminoguanidine-based, responsible for Pseudomonas 
aeruginosa inhibition. Alignments were tried to obtain best 3D-QSAR model, of which, compound 5 was found to be the best 
method, as it gave good statistical results. In CoMFA, Leave One Out (LOO) cross validated coefficients (q2), and conventional 
coefficient (r2) values were found to be 0.5177 and 0.968, respectively. Similarly, in CoMSIA, q2, and r2 values were found 
to be 0.576 and 0.985, respectively. Multi-parameter optimization (MPO), golden triangle rule, structure activity/property 
relationships (SAR/SPR), Drug-likeness properties, and lipophilicity indices are reported and discussed in terms of the 
biological activity of iminoguanidine-based inhibitors of HemO. These techniques offer the ability to guide drug design and 
selection to quickly identify the compounds with desirable drug-like attributes. 

Keywords: Hemeoxygenase (HemO), Pseudomonas aeruginosa, Iminoguanidine derivatives, QSAR, CoMFA, docking, MD 
Simulations, ADME, Lipophilicity indices, Golden Triangle 

INTRODUCTION 

Heme is chemical compounds composed of iron and an 
organic part called protoporphyrin IX, relating to or serving 
as a prosthetic radical of many enzymes which facilitates a 
wide variety of processes like electron transport (cytochrome 
P450 family), enzyme catalysis (e.g. peroxidase, catalase, 
cyclooxygenase, nitric oxide synthase), reversible binding of 
gases (hemoglobin, myoglobin, guanylate cyclase) [1] and 
various degrees of antioxidant, anti-inflammatory, anti-
apoptotic, anti-proliferative, and immunomodulatory effects, 
most of which maypole an important part in the defense 
against atherosclerotic lesion formation [2]. Besides, it 
involved in the regulation of protein synthesis and cell 
differentiation [1] and protective genetic factor against 
proatherogenic effects produced by environmental factors 
such as cigarette smoking or exposure to air pollution [2]. 
Heme which is an author of iron (a vital micronutrient 
essential for the survival and virulence of most bacterial 
pathogens) for Pseudomonas aeruginosa on infection of the 
host. The flexibility of heme into the cell is driven by the 
catalytic action of hemeoxygenase (HemO) and controlled by 
the heme binding protein (PhuS). Despite advances in 
structural characterization of bacterial heme uptake proteins, 

the mechanism of heme transfer is poorly defined [3]. The 
opportunistic pathogen Pseudomonas aeruginosa encodes two 
distinct heme uptake systems: The Pseudomonas heme uptake 
(phu) and the heme assimilation system (has) [4]. It was 
recently determined that the Phu system is the primary iron 
acquisition system in P. aeruginosa chronic infection of the 
cystic fibrosis lung and up-regulated coincident with a 
decrease in the levels of the major secreted siderophore 
pyoverdine [5,6]. This increase is in large part caused by point 
mutations within the promoter region of the phu operon 
leading to increased expression of PhuR [5]. Therefore, 
understanding the molecular mechanisms by which P. 
aeruginosa acquires and uses heme may provide a therapeutic 
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strategy in the treatment of P. aeruginosa chronic infections. 
To combat the decline in viable antibiotics and growing 
antimicrobial resistance, an alternative hypothesis suggests 
targeting virulence factors that are not required for survival 
but are essential for pathogenesis within the host [3].  

A new cure aims to fight multidrug-resistant infections, such 
as the iron-regulated hemeoxygenase (HemO) of 
Pseudomonas aeruginosa, due to connections between iron 
and virulence and a requirement on heme as an iron source 
during infection. In this study, we determined structural 
elements QSAR study for modeling the inhibitory effects of 
25 synthesized iminoguanidine derivatives 
[https://pubchem.ncbi.nlm.nih.gov/bioassay/1315712]. 
Multiple linear regression and genetic algorithm (MLR-GA) 
methods were used for modeling the relationship between 
pMIC50 and their structural descriptors. 3D-QSAR models 
and molecular docking analysis of all the compounds were 
predicted. Molecular dynamic simulations to explore the 
binding modes of these compounds and identify the vital 
moieties for biological activity. Lastly, ADMET and golden 
triangle methods were used to assess drug lord and identify 
compounds with good stability of the many physicochemical 
and biological properties necessary to become a successful, 
effective, and harmless drug. 

MATERIALS & METHODS 

Experimental data 

Synthesis and activity of a series of iminoguanidine-based 
inhibitors of HemO were taken from the literature reported by 
PubChem 
[https://pubchem.ncbi.nlm.nih.gov/bioassay/1315712]. The 
experimental MIC50 values of all compounds in ug.mL-1 
where converted in pMIC50 by taking –Log (1/MIC50) and 
were used as the dependent variable. There was a total of 25 
iminoguandine derivatives which are then split into a training 
set of 16 compounds for generating QSAR and 3D-QSAR 
modeling which were carried out through molecular 
interaction fields (MIFs) analysis, and a test set of 7 
compounds for validating the quality of the models. 
Remaining 2 compounds that failed to optimize were 
removed. The compounds in the test set were selected from 
the original pool of structures based on the Kennard-Stone 
method (DTC-Lab v1.2) with a ratio of 70:30 percent 
respectively (the test set is marked by *). All the structures 
(Figure 1) and inhibitory activities are listed in Table 1. 

COMPUTATIONAL DETAILS AND DESCRIPTOR 
CALCULATIONS 

All the 2D structures were generated by Marvin View 
software package and transferred to Spartan’14 version 14.1.0 
software to create the 3D structure, pre-optimized using semi-
empirical PM3 minimization. Then a more precise 
optimization was performed to make the conformations with 
the least potential energy using Merck molecular force field  

Figure 1. 2D chemical structure of iminoguanidine-based 
inhibitors of HemO. 

(MMFF) with density functional theory (DFT) with Becke's 
three-parameter hybrid functional [7] using LYP correlation 
functional [8]. The standard Pople’s 6-311+G** basis set was 
used. Descriptors were calculated using Spartan'14 v1.1.4, 
PaDEL-Descriptor v2.20, and MedChem Designer v3.1 
which include: Quantum-chemical, molecular orbital, 
thermodynamics, charged partial surface area, electrostatic 
geometrical, and topological descriptors. 

ALIGNMENT AND COMFA ANALYSIS 

Proper alignment of the chemical structure relative to one 
another is one of the most important steps in the 3D-QSAR 
analysis for obtaining an effective molecular interaction field 
(MIF) model. The molecules were superimposed using the 
atom-based and pharmacophore-based alignment by the 
Open3DALIGN tools v2.3 [9]. The energy minimized and 
optimized structures were aligned by the template-based 
method, and compound 5 was selected as the template to 
construct other compounds because of its high representative 
chemical structure and the alignment was completed by 
open3DALIGN software. The alignment corresponding to the 
highest cumulative O3A score was selected for further 
analysis. Figure 2 shows the best alignment in which 
compound 5 was selected as the template. CoMFA is a 
versatile method to describe 3D-QSAR quantitatively. 
Open3DQSAR software (version 2.3) is open-source software 
available for high-throughput chemometric analysis of 
molecular interaction fields (MIFs) [10]. This study used 
Open 3DQSAR to perform CoMFA analysis.  

1. The best alignment with compound 5 as a template as
shown in Figure 2 is placed in a 3D cubic lattice with 2 Å
grid size and a 5.0 Å out gap.

2. The steric fields were computed using an SP3 hybridized
carbon atom probe with a +1 charge. Similarly, electro-static
fields were computed using a volume-less probe.

3. These steric and electrostatic interaction energies were
considered as independent variables (CoMFA descriptors).

Before creating of CoMFA model following pretreatment 
operations were carried out to reduce the noise hidden in PLS 
matrix and hence reduced the computational time: 
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Table 1. Structures and structural formulae of compounds and their pMIC50 values. 

Compound R1 R2 R3 ugmL-1 pMIC50 

1* -Cl -H -H 49 1.6902 

2 -NC2H6 -H -H 121 2.0828 

3 -H -OH -H 123 2.0899 

4 -H -OCH3 -H 99.5 1.9978 

5 -NO2 -H -H 72.8 1.8621 

6 -H -F -H 131.2 2.1179 

7 48.4 1.6848 

8 -H -H -Cl 52.4 1.7193 

9 -H -Cl -H 47.3 1.6749 

10 -CH(CH3) CH3 -H -H 52.3 1.7185 

11* -OCH3 -H -H 113 2.0531 

12 - - 32.1 1.5065 

13 -F -H -H 162 2.2095 

14* -Br -H -H 52.5 1.7202 

15R 23.2 1.3655 

16* -H -Br -H 50.1 1.6998 

17 -H -OH -Br 80.5 1.9058 

18R -C6H5 H H 59.1 1.7716 
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19* - - 1140 3.0569 

20* -OH -H -H 408 2.6107 

21 -H -H -OH 750 2.8751 

22* -H -H -OCH3 134 2.1271 

23 -H -H -F 66.6 1.8235 

24 -H -H -Br 51.3 1.7101 

25 - - 32.3 1.5092 

*Test set; RCompound removed from the model

4. The minimum and maximum energy values of steric and
electrostatic were set to a cutoff value −30.0and +30.0
kcal/mol, respectively. This pretreatment avoids the infinity
of energy values inside the molecule.

5. Low energy values (<0.05 kcal/mol) were set to zero in
both fields.

6. Standard deviation set to <0.1 to improve the signal-to-
noise ratio.

7. N-level variables that are variables that assume only N
values across the training set were removed, most of which
distributed on a small number of objects. This process avoids
overweighting the importance of particular substituents
present in a single molecule. Otherwise, it might negatively
affect the whole model.

8. The whole block of X or Y variables scaled by block
unscaled weighting (BUW) technique.

Prediction of the CoMFA model can be significantly 
improved by suitable variable clustering and selection 
procedures specified as smart region definition (SRD) and 
fractional factorial design (FFD). These variable selection 
techniques selectively eliminate noisy variables with no 
certainty. The SRD procedure carries out variable grouping 
based on their closeness in the 3D area to reduce the 
redundancy arising from the existence of multiple nearby 
descriptors which mainly encrypt the identical form of 
content [11]. FFD aims at selecting the variables which 
significantly increase the predictive ability (using the LOO, 
LTO, or LMO models), and can operate on both single 

variables or groups identified by a previous SRD run, thereby 
removing unhelpful variables groups as performed in GOLPE 
[12]. 

PLS analysis carries out in Open3DQSAR was engaged to 
obtain a correlation between the descriptors derived by 
CoMFA (independent variables) and pMIC50 values 
(dependent variable). Open3DQSAR produces a PLS model 
through the Non-linear iterative partial least squares 
(NIPALS) algorithm [13]. The statistical parameters like the 
coefficient of determination (R2), Standard Deviation Error 
in Calculation (SDEC), Standard Deviation Error in 
Predictivity (SEDP), and F-ratio test were computed the 
overall significance of the model. Moreover, the CoMFA 
color contour maps are derived for the steric and electrostatic 
fields. 

MOLECULAR DOCKING (MD) AND MOLECULAR 
DYNAMICS SIMULATIONS (MDSS) 

The docking methodology can be used to perfect the 
interaction between a small molecule (drugs) and a protein 
(target) at the atomic level, which allow us to illustrate the 
behavior of drugs in the binding site of target proteins as well 
as to explain vital biochemical processes [14]. Docking of 
iminoguanidine-based inhibitors of HemO (25 compounds) 
was checked by AutoDock4.2 [15] program to detect their 
binding site, the best path, and the binding energy [16]. The 
crystal structure (target) of HemO (PDB entry code: 4mgf) 
was extracted from the Brook haven Protein Database (PDB 
http://www.rcsb.org/pdb). The X-ray crystal structure (target) 
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Figure 2. Alignment of 25 iminoguanidine-based inhibitors of HemO. 

PDB: 4mgf was used to dock. At the beginning of docking, 
all the water molecules, Hetatm and B chain were removed, 
hydrogen atoms (polar only), and Kollman charges were 
added to the protein, and the file saved as pdbqt. A grid box 
was created with a grid point spacing of 0.375 Å and 40 × 40 
× 40 points. Preparation of grid parameter file (.gpf) and a 
docking parameter file (.dpf), the Lamarckian genetic 
algorithm, and default procedures for docking a flexible 
ligand to a rigid protein were followed. The optimized 
receptor was then saved as a PDB file and used for docking 
simulation and molecular dynamics simulation (NAMD) 
[17]. 

RESULTS AND DISCUSSION 

PMIC50 = 1.43985(+/-1.46294) +0.52064(+/-0.29982) 
EHOMO -0.9114(+/-0.20999) ELOMO -0.02651(+/-
0.00365) PSA -0.00004(+/-0.00005) Ho  -------------Model 1 

Internal Validation Parameters 

SEE = 0.1538; r^2 = 0.8499; r^2 adjusted = 0.7953; F = 
15.5722 (DF: 4, 11) 

Leave-One-Out (LOO) Result 

Q2 = 0.5008; PRESS = 0.8651; SDEP = 0.2325 
Without scaling After scaling 
rm^2(Loo)         :  0.47126 0.48689 
rm^2'(Loo)         :  0.23983 0.22357 
average rm^2(LOO)  : 0.35555 0.35523 
delta rm^2(LOO)  : 0.23142 0.26332 

External Validation Parameters (Without Scaling) 

r^2 = 0.91153; r0^2 = 0.8677; reverse r0^2 = 0.7660; 
rm^2(test) = 0.7207; reverse rm^2(test) = 0.5638; average 
rm^2(test) = 0.6423; delta rm^2(test) = 0.1568; rmsep = 
0.2417; rpred^2 :0.7806; Q2f1 = 0.7806; Q2f2 = 0.7776 

Some External Validation Parameters (After Scaling): 
rm^2(test) = 0.6084; reverse rm^2(test) = 0.3574; average 
rm^2(test) = 0.4829; delta rm^2(test) = 0.25096 

Overall Parameters 

Without scaling After scaling 
rm^2(overall)       : 0.63481 0.59588 
reverse rm^2(overall)  : 0.34942 0.29109 
average rm^2(overall) : 0.49212 0.44349 
delta rm^2(overall)   : 0.28538 0.30479 

Golbraikh and Tropsha acceptable model criterias 
1. Q^2  0.5007  Passed   (Threshold value Q^2>0.5)
2. r^2 0.9115 Passed   (Threshold value r^2>0.6) 
3. |r0^2-r'0^2| 0.1017 Passed   (Threshold value |r0^2-
r'0^2|<0.3) 
4. k = 1.08014; [(r^2-r0^2)/r^2]   0.0481 OR*   k' = 0.91837;
[(r^2-r'0^2)/r^2] = 0.15963 Passed   (Threshold value:
[0.85<k<1.15 and ((r^2-r0^2)/r^2)<0.1 ] OR* [0.85<k'<1.15
and ((r^2-r'0^2)/r^2)<0.1] )

It can be seen that the performance of Model 1 built with four 
Spartan'14 descriptors, the standard errors of regression 
coefficients are given. Four variables EHOMO, ELUMO, 
PSA, and Ho in Model (1) could explain 85% of the variance 
(adjusted coefficient of variation) of the activity. The leave-
one-out predicted variance was found to be 50%. The 
difference between |r0^2-r'0^2| is less than 0.3 signifying the 
robustness of the model [18]. While Model (1) was applied 
for the prediction of test set compounds, the predictive R2 
value for the test set was found to be 0.7806. As r2 and r02 
values are not much different, an acceptable value of 
rm^2(test) (0.7207) was obtained [19]. The mean effect (MF) 
value indicates the relative importance of a descriptor, 
compared with the other descriptors in the model. Its sign 
indicates the variation direction in the values of the activities 
as a result of the increase (or reduction) of the descriptor 
values. The mean effect values are given in Table 2. A 
negative effect of these descriptors illustrates that the  



SciTech Central Inc. 

J Drug Design Discov Res (JDDDR) 			41 

J Drug Design Discov Res, 1(2): 36-52     Edache EI 

biological activity increases with decreasing the value of 
Energy of the lowest unoccupied molecular orbital (ELOMO) 
and standard enthalpy (Ho).  The Energy of the highest 
occupied molecular orbital (EHOMO) and polar surface area 
(PSA) mean effect has a positive sign, suggest that the 
biological activity is directly related to these descriptors. 
The leverage values can be calculated for every compound 
and plotted vs. standardized residuals, and it allows a 
graphical detection of both the outliers and the influential 
compound in a model. Figure 3 shows the Williams plot, the 

applicability domain is established inside a squared area 
within ±3 bound for residuals and a leverage threshold h* (h* 
=3(k+1)/n, where k is the number of model parameters and n 
is the number of compounds [20]. It demonstrates that some 
of the compounds of the training and test set are inside of this 
square area. There are influential outlier compounds with 
standard residuals >3d for the training sets. Besides, all the 
chemicals have leverage lower than the warning h* value of 
0.60 except compounds 2, 5, and 19. 

Figure 3. The Williams plot, the plot of the standardized residuals vs the leverage value. 

Table 2. The calculated quantum chemical descriptors in this study. 

Descriptor Description Mean effect 

EHOMO The energy of the highest occupied molecular orbital 0.8772 

ELOMO The energy of the lowest unoccupied molecular orbital -0.4298

PSA Polar Surface Area 0.5663 

Ho Standard Enthalpy -0.0137

Since the QSAR model satisfied the Roy and Paul [19], 
Golbraiikh and Tropsha [21] criteria, showed that the QSAR 
model is considered predictive. 

Investigation of the 3D-QSAR structure-activity 
quantitative relationship 

To assess the predictive ability of the 3D-QSAR models, the 
following statistical parameters were used: the coefficient of 
determination (R2), the mean-square error of the model 
(SDEC), the F-statistic value, the correlation coefficient of the 
leave-one-out (LOO) method (Q2LOO), the correlation 
coefficient of the leave-two-out LTO method (Q2LTO), the 

correlation coefficient of the LMO method (Q2LMO), and the 
mean-square error of prediction (SDEP). The statistical 
results of MIFs studies are summarized in Table 3. The 
predicted values of the iminoguanidine-based activity are 
shown in Table 4. The calculated values of the model have 
the best match with the experimental data. The level of 
correlation between the activities predicted by the CoMFA 
model and the experimental values is also shown in Figure 3. 

As can be seen from Table 3 (fractional factorial design 
(ffdsel)), the model has a high predictive ability. High 
coefficients of determination (R2 = 0.968) and LOO cross- 
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validation (Q2 = 0.52) indicate the statistical significance of 
the obtained model. The scatter plot of observed pMIC50 vs. 
predicted pMIC50 of both the training and test set of CoMFA 
models is shown in Figure 3. Molecular interaction field 
(MIF) contour maps were obtained to visualize the 
information about the 3D-QSAR models. The CoMFA steric 

(88.56%) and electrostatic (11.44%) contour maps were 
shown in Figure 4. The steric field is represented by green 
and yellow contours in which green contours indicate regions 
where the bulky group would be favorable while the yellow 
contours represent regions where the bulky group would 
decrease the activity. 

Table 3. Statistical parameters of optimal CoMFA model. 

STA R2 SDEC F-test Q2
LOO SDEPLOO Q2

LTO SDEPLTO Q2
LMO SDEPLMO 

CoMFA 

(ffdsel) 

0.968 0.0574 61.935 0.5177 0.2254 0.5012 0.2293 0.4731 0.0139 

CoMSIA 

(uvepls) 

0.985 0.0405 126.7 0.576 0.2114 0.5628 0.2146 0.51 0.0191 

Ffdsel: fractional factorial design (FFD) 

Figure 4. Activity plots of actual pMIC50 vs. predicted pMIC50of training and test set of iminoguanidine-based inhibitors of 
HemO by CoMFA models. 

As shown in Figure 4, green contour near the Rs position 
specified bulky groups at this position would increase the 
potency. The electrostatic field is indicated by blue and red 
contours, which demonstrate the regions where an electron-
donating group and an electron-withdrawing group would be 
favorable, respectively. Great attention should be paid to the 
red region which indicates that the presence of a negatively 
charged group would increase the activity. The small yellow 
contours at the tail portions of the R2 residue show that too 
long alkyl chains might have a negative influence on its 
activity. A large yellow contour indicates that the -OH group 
is preferable at this position as compared to OCH3. In an 
electrostatic field, red and blue contours are mostly 
distributed near to the core of the iminoguanidine. So, the 
electronegative and electropositive substituents in these 

regions are likely to boost biological activity. The red 
contours surrounded the R1 and R3 position suggests that the 
electron-rich substituents in this region are likely to enhance 
biological activity. It indicates R1 group substituent is 
preferable than R3 group substituent because R3 group 
substituent is more electron-rich and it allows the electrons to 
be donated easily but not capable of ionization. The blue 
electrostatic contour near the R3 position indicates the 
presence of an electron-deficient group is favorable at this 
position. 

The CoMFA model (uvepls) for iminoguanidine-based 
inhibitor of HemO yielded a strong PLS correlation with R2 
= 0.985, Q2LOO = 0.576, Q2LTO = 0.563, and Q2LMO = 
0.51 respectively, indicating an excellent internal prediction 
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Table 4. The experimental and predicted pMIC50 values of the training and test set. 

Name pMIC50 ffdsel Residual values uvepls Residual values 

2 2.0828 2.1155 -0.0327 1.9769 0.1059 

3 2.0899 2.0729 0.017 2.1038 -0.0139

4 1.9978 2.0067 -0.0089 1.9096 0.0882 

5 1.8621 1.8473 0.0148 1.8692 -0.0071

6 2.1179 2.2826 -0.1647 2.3303 -0.2124

7 1.6848 1.6996 -0.0148 1.6322 0.0526 

8 1.7193 1.6659 0.0534 1.6644 0.0549 

9 1.6749 1.6659 0.009 1.6644 0.0105 

10 1.7185 1.6768 0.0417 1.8176 -0.0991

12 1.5065 1.5076 -0.0011 1.5521 -0.0456

13 2.2095 2.1418 0.0677 2.1771 0.0324 

17 1.9058 1.9704 -0.0646 1.8483 0.0575 

21 2.8751 2.7919 0.0832 2.8051 0.07 

23 1.8235 1.7789 0.0446 1.8262 -0.0027

24 1.7101 1.7466 -0.0365 1.7621 -0.052

25 1.5092 1.5175 -0.0083 1.5484 -0.0392

1* 1.6902 1.7236 -0.0334 1.7129 -0.0227

11* 2.0531 1.8593 0.1938 1.8144 0.2387 

14* 1.7202 2.1649 -0.4447 2.1906 -0.4704

16* 1.6998 2.2818 -0.582 2.3389 -0.6391

19* 3.0569 1.5399 1.517 1.8087 1.2482 

20* 2.6107 1.8275 0.7832 1.7982 0.8125 

22* 2.1271 2.7255 -0.5984 2.73 -0.6029

power of the established model. The conventional R2, F-test, 
and SDEC for the CoMFA model were found reasonable. The 
values of experimental and predicted activities along with the 
residual values of the training set and test set molecules are 
summarized in Table 4. The scatter plot of the observed vs. 
predicted values of pMIC50 of both the training and test set of 
CoMFA models is shown in Figure 5. This data shows that 
the observed and predicted activities of inhibitors are very 
close to each other. Most of the molecules show residual 
values less than 0.4. This graphical representation conforms 
to the good predictive power of the established model and also 
indicate that the developed CoMFA model is reliable and 
could be used in designing new inhibitors (Figures 6 and 7). 

The Green and yellow contours represent the steric fields 
(79.54%). In detail, the green region in the steric contour 
maps indicates an area where the bulky groups are favored for 
activity while the yellow contours represent regions where the 
bulky groups are not favored for the activity. The red and blue 
contour represents electrostatic contour maps (20.46%). The 
blue contour defines a region of space where positively 
charged substituent increases activity, whereas the red 
contour defines a region of space where negatively charged 
substituent increases activity. This sterically crowded R2 
group substituent may bring a hydrophobic nature to the 
parent iminoguanidine thereby enhances the activity. 
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Figure 5. (FFDSEL): Steric and electrostatic contour maps 
representing the comparative molecular field analysis 
(CoMFA) model for iminoguanidine-based inhibitors of 
HemO. Green regions and yellow region indicate areas where 
steric interactions increase and decrease activity. Blue denote 
enhancing and detrimental electrostatic effects with the 
positively charged probe, respectively. 

MOLECULAR DOCKING RESULTS: INTERACTION 
MECHANISM BASED ON THE BINDING FREE 
ENERGY ANALYSIS 

The docking results confirm the QSAR and 3D-QSAR 
analysis and experimental values (Table 1). The docking 
results of selected compounds are shown in Table 5. 
Compound 12 (Figure 8), which is the best-performing 
molecule in the data set, has the most binding energy (-
6.54kcal/mol) and inhibition constant (Ki) as 16.01 µM. The 
steric (vdw_lib_desolve_energy) of -6.88 and the 
electrostatic_energy of 0.03 with ligand efficiency of -0.41. 
The docked conformations showed that all ligands bind to the 
active residues in the predefined hydrophobic binding pocket. 
The key residues in the binding pocket were Ala263, Glu325, 
Leu326, Asn79, Gly261, Ile327, Val260, Glu329, Phe259, 
Val328, Asn262, and Ile266. 

MOLECULAR DYNAMICS SIMULATION RESULTS 

The MD simulations were performed using the NAMD 
package [17] and was performed with CHARMM 27 force 
field. The parameter file par_all27_prot_lipid.inp was used. 
First the protein-ligand complex was solvate in water box as 
shown in Figure 9. Minimization was performed to optimize 
the initial structure of protein-ligand complex. After that, the 
temperature of system was gradually heated up from 0K to 
310K in 50ps. Subsequently, the system was equilibrated at 
310K for 100ps with NVT ensemble. Results of this 
simulation study revealed that the protein get stabilized after  

Figure 6. Activity plots of actual pMIC50 vs. predicted pMIC50 of training and test set of iminoguanidine-based inhibitors of 
HemO by CoMFA models. 

500fs and it stayed stabilized up to 1000fs with respect to 
kinetic energy, temperature, total energy and RMSD was also 
determined as shown in Figure 10, respectively. 
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Figure 7. (UVEPLS): MIF contour maps for the 
iminoguanidine: Steric and electrostatic contour maps 
representing the comparative molecular field analysis 
(CoMFA) model for iminoguanidine-based inhibitors of 
HemO. Green and yellow contours indicate regions where 
bulky groups increase or decrease the activity. Blue and red 
contours indicate regions where electron-donating or 
electron-withdrawing groups increase the potency. 

Figure 8. Molecular docking interactions of compound 12 
with unsimulated protein structure. 

Figure 9. Solvate protein (pdb entry code: 4mgf) in a water 
box. 

This result of molecular dynamics simulation proved that the 
docking of compound 12 was done correctly in the active site 
of HemO. It also gave the idea that the compound 12 formed 
a stable complex with protein when protein was simulated up 
to or beyond 500fs concerning temperature (at or above 298 
K), kinetic energy (at or above 23895.44 kJ/mol) and total 
energy (at or above -57629.53 kJ/mol). To check the 
consistency of simulated and docked protein structure, they 
were arrayed over each other as shown in Figure 11. Exact 
alignment of docked and simulated protein structure with 
RMSD value 0 proved that the sequence of amino acid 
remained the same before and after the simulation and hence 
there was no change in the binding cavity of protein. From the 
results, the increase in the hydrophobic bond interaction with 
improved docking score was due to the stable conformation 
of simulated protein not due to change in the sequence of 
amino acids. 

DRUG-LIKE PROPERTIES 

The investigation of the World Drug Index (WDI), leads to 
Lipinski's ‘rule-of five’ [22-24]- that identified several critical 
properties that should be considered for compounds with oral 
delivery in mind. These properties, are usually viewed more 
as guidelines rather than absolute cutoffs, and they are: 

Molecular weight, MW < 500 Da 
Lipophilicity, log P or the calculate of 1-octanol-water 
partition coefficient, ClogP < 5 (or MlogP < 4.15) 
Number of hydrogen-bond donors, OH plus NH count, <5 
Number of hydrogen-bond acceptors, O plus N atoms, <10 

The Ghose's "rule of four"[25, 26] are: 

Calculated logP is between -0.4 and 5.6 or AlogP between 1.3 
and 4.1 
Molecular weight, between 160 and 480 
Molar refractivity, between 40 and 130 
Total number of atoms, between 20 and 70 
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Table 5. Docking score and PSA of iminoguanidine-based inhibitors of HemO. 

Compound Docking Scorce LE Inh_Con vdw Electr PSA 

1 -4.95 -0.38 234.54 -5.37 0.0 64.537 

2 -5.35 -0.36 119.93 -5.91 -0.08 65.687 

3 -5.9 -0.45 47.33 -6.18 -0.03 83.266 

4 -5.35 -0.38 119.76 -5.8 -0.02 70.39 

5 -5.39 -0.36 112.56 -5.18 -0.9 103.31 

6 -5.44 -0.42 103.53 -5.77 -0.1 63.978 

7 -5.96 -0.37 43.03 -6.25 -0.11 64.496 

8 -5.56 -0.43 84.24 -5.96 -0.01 64.461 

9 -5.72 -0.44 64.1 -6.00 -0.1 63.712 

10 -5.33 -0.36 122.88 -5.87 -0.02 64.552 

11 -5.35 -0.38 119.82 -5.82 -0.16 71.511 

12 -6.54 -0.41 16.01 -6.88 0.03 64.416 

13 -5.29 -0.41 133.14 -5.66 -0.01 64.551 

14 -5.01 -0.39 213.11 -5.48 -0.01 64.535 

15 -6.17 -0.31 29.78 -6.95 -0.1 71.013 

16 -5.66 -0.44 71.39 -5.95 -0.07 63.444 

17 -5.36 -0.38 118.62 -6.06 -0.13 77.871 

18 -5.85 - - 5.05 0.08 64.527 

19 -5.34 -0.38 120.86 -6.2 -0.13 103.854 

20 -5.29 -0.41 133.28 -5.87 -0.13 84.311 

21 -5.61 -0.43 77.5 -6.28 -0.05 84.224 

22 -5.45 -0.39 100.87 -6.11 0.02 71.416 

23 -5.53 -0.43 88.97 -582 -0.11 64.501 

24 -5.44 -0.47 102.35 -5.85 -0.04 64.452 

25 -5.4 -0.39 110.8 -5.86 -0.04 64.451 

LE=ligand_efficiency; Inh_con=inhibition constant; vdw=vdw_lib_desolve_energy; `Electr=electrostatic_energy 

The Veber’s “rule of two” [27] are: 

The number of rotating bonds (nrotb) < 10 
Polar surface area (PSA) equal to or less than 140 Å2 

The above-mentioned parameters were calculated for all the 
series of the iminoguanidine derivatives (Table 3). 
Compound is probs to be dynamic orally if it follows the 
Lipinski and Veber rule [22-24,27]; however, it is deserving 
indicating some oral drugs which do not respect the rule. The 
partition coefficient (Log P) of Octanol/water is widely used 
for an estimation of membrane penetration and permeability, 
including gastrointestinal absorption, brain–brain crossing 

(BBC), and correlations with pharmacokinetic properties 
[28,29]. In other words, Low molecular weight drug 
molecules (<500) are easily transported, diffused and 
absorbed in relation to heavy molecules. The amounts of 
hydrogen bond acceptors (O and N atoms) and hydrogen-
bonding donors (NH and OH) are found to be critical in drug 
development because they have an influence on absorption 
and permeation [30]. Screening process with Lipinski Rule of 
Five showed that all the compounds meet the criteria of drug-
likeness assessment except compound 19. However, 
compound 19 were rejected with one violation (Table 6). 
According to the screening process with Ghose rules showed  



SciTech Central Inc. 

J Drug Design Discov Res (JDDDR) 			47 

J Drug Design Discov Res, 1(2): 36-52     Edache EI 

Figure 10. Molecular dynamics simulations study of A-chain of protein (PDB ID: 4mgf) concerning (A) time vs Kinetic; (B) 
time vs temperature; (C) time vs total energy; (D) time vs RMSD. 

Figure 11. Docking interactions of compound 12 with 
simulated protein structure. 

that all compounds meet the criteria except compound 19 
were their AlogP is less than 1.3 (Table 7) [25-26]. Polar 
surface area is defined as a sum of surfaces of polar atoms 
(usually oxygens, nitrogens and attached hydrogens) in a 
molecule. This parameter has been shown to correlate very 
well with the human intestinal absorption, Caco-2 
monolayer's permeability, and blood-brain barrier 
penetration. Molecules with PSA values of 140 A2 or more 

are expected to exhibit poor intestinal absorption. PSA values 
using Spartan'14 software (Table 5) and MedChem Designer 
(Table 6) are below 140 Å2. Number of rotatable bonds 
(nRotBt) is a simple topological parameter that measures 
molecular flexibility and is considered to be a good descriptor 
of oral bioavailability of drugs [31]. All the screened 
compounds using PaDEL software v2.0 were flexible, all the 
compounds 1 to 25 have rotatable bonds less than 8 (Table 
7). However, the screening process with Veber rules [27], all 
the 25 compounds meet the criteria of drug likeness 
assessment, suggesting that these compounds theoretically 
have ideal oral bioavailability. These physicochemical 
parameters are associated with acceptable aqueous solubility 
and intestinal permeability that are the first steps in oral 
bioavailability. 

The ideas such as ligand efficiency (LE), which correlates 
potency and molecular weight, and ligand-lipophilicity 
efficiency (LLE), which correlates potency and lipophilicity, 
have been employed by medicinal chemists to all together 
evaluate compound potency to properties [32]. Ligand 
efficiency (LE) is an important new concept, which estimates 
the efficiency of a binding interaction concerning the 
magnitude of ligand physical properties, most notably 
molecular weight [33]. The ligand efficiency (LE) is defined 
as followed: 

  𝐿𝐸
𝑝𝑀𝐼𝐶

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑒𝑎𝑣𝑦 𝑎𝑡𝑜𝑚𝑠
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Table 6. Calculation of electronic parameters of drug likeness of the iminoguanidine-based by using MedChem Designer. 

Name MlogP S+logP S+logD RuleOf5 RuleOf5_Code MWt M_NO T_PSA HBDH 

1 2.618 1.325 0.988 0 <None> 196.64 4 76.76 4 

2 2.134 0.779 -0.61 0 <None> 205.264 5 80 4 

3 1.513 -0.258 -0.597 0 <None> 178.195 5 96.99 5 

4 1.831 0.57 0.051 0 <None> 192.222 5 85.99 4 

5 2.08 0.782 0.757 0 <None> 207.193 7 122.58 4 

6 2.461 1.001 0.581 0 <None> 180.186 4 76.76 4 

7 3.064 1.909 1.652 0 <None> 212.256 4 76.76 4 

8 2.618 1.381 1.094 0 <None> 196.64 4 76.76 4 

9 2.618 1.346 1.065 0 <None> 196.64 4 76.76 4 

10 2.945 1.654 0.651 0 <None> 204.276 4 76.76 4 

11 1.831 0.543 -0.367 0 <None> 192.222 5 85.99 4 

12 3.064 1.874 1.645 0 <None> 212.256 4 76.76 4 

13 2.461 0.916 0.23 0 <None> 180.186 4 76.76 4 

14 2.771 1.401 0.772 0 <None> 241.096 4 76.76 4 

15 3.258 1.978 1.166 0 <None> 268.32 5 85.99 4 

16 2.771 1.41 0.9 0 <None> 241.096 4 76.76 4 

17 2.252 0.058 0.004 0 <None> 257.096 5 96.99 5 

18 3.522 2.228 1.479 0 <None> 238.294 4 76.76 4 

19 1.009 -0.477 -0.806 1 Hb 194.194 6 117.22 6 

20 1.513 -0.173 -0.893 0 <None> 178.195 5 96.99 5 

21 1.513 0.098 -0.307 0 <None> 178.195 5 96.99 5 

22 1.831 0.636 0.251 0 <None> 192.222 5 85.99 4 

23 2.461 1.008 0.588 0 <None> 180.186 4 76.76 4 

24 2.771 1.472 0.996 0 <None> 241.096 4 76.76 4 

25 3.19 2.085 1.921 0 <None> 231.085 4 76.76 4 

Leach and his coworkers propose lipophilicity per unit of in 
vitro potency, or ligand-lipophilicity efficiency [33], as a 
more important objective for lead generation and optimization 
programs. The ligand-lipophilicity efficiency (LLE/LipE) is 
defined as followed: 

𝐿𝐿𝐸 𝑝𝑀𝐼𝐶 𝑆 𝑙𝑜𝑔𝐷 𝑜𝑟 𝐿𝑜𝑔𝐷  

It is suggested to target a LipE is between 5 and 7 or even 
higher [34]. 

Ligand efficiency-dependent lipophilicity index (LELP) to 
combine molecular size and lipophilia into a single measure 
of efficacy [35]. The optimal value of LELP scores are -10 < 
LELP < 10 [36] and is defined as: 

𝐿𝐸𝐿𝑃
𝐿𝑜𝑔𝑃
𝐿𝐸

Total polar surface area (TPSA) is a very useful parameter for 
prediction of drug transport properties [31]. TPSA (PaDEL 
software v2.0) of iminoguanidine derivatives were found in 
the range of 37.3457- 135.4850 and is well below the 140 Å2, 
and we can observe obviously that all the title compounds 1 
to 25 exhibited a great percentage absorption (%ABS) [37] 
ranging from 72.1514 to 96.1157%, indicating that these 
compounds should have good cellular plasmatic membrane 
permeability except compound 19 (Table 7). Some 
compound is situated in the suggested range –10 < LELP<10. 
In the other hand, the compounds have LELP less than 16.5, 
which mean that these compounds are in the Lipinski zone 
(ROF-score = 4). Except the compounds 4 and 17 their LELP 
is 39.1730 and 476.4490 respectively are in agreement with 
their weak ROF-score <4 (Table 7). 
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Table 7. Structure activity, calculated metricsand Lipophilicity indice. 

Compound LELP LLE %ABS TPSA LE nRotBt nAtom ALogP 

1 1.7107 0.7022 88.6981 58.8460 0.1300 5 22 1.0728 

2 -3.4144 2.6928 94.5916 41.7635 0.1389 7 30 0.4751 

3 -3.5007 2.6869 67.0692 121.5385 0.1608 5 23 0.141 

4 39.1730 1.9468 86.8864 64.0973 0.1427 6 26 0.2055 

5 2.4599 1.1051 95.9328 37.8758 0.1241 6 24 0.9174 

6 3.6453 1.5369 77.7409 90.6060 0.1629 5 22 0.6139 

7 1.0199 0.0328 93.9921 43.5012 0.1053 4 28 1.2485 

8 1.5716 0.6253 96.1157 37.3457 0.1323 5 22 1.0728 

9 1.5726 0.6099 89.1249 57.6090 0.1288 5 22 1.0728 

10 2.6398 1.0675 93.6771 44.4142 0.1146 7 31 1.0814 

11 -5.5942 2.4201 89.2829 57.1509 0.1466 6 26 0.2055 

12 0.9158 -0.1385 95.4451 39.2895 0.0942 4 28 1.2485 

13 9.6067 1.9795 72.1514 106.8075 0.1700 5 22 0.6139 

14 2.2282 0.9482 95.8719 38.0525 0.1323 5 22 1.1568 

15 1.1711 0.1995 91.1392 51.7703 0.0683 7 36 1.3226 

16 1.8887 0.7998 88.8201 58.4925 0.1308 5 22 1.1568 

17 476.4490 1.9018 83.7292 73.2487 0.1361 6 23 0.5937 

18 1.1978 0.2926 96.0548 37.5224 0.0984 5 32 1.7163 

19 -3.7927 3.8629 33.3112 219.3878 0.2184 6 24 -0.422

20 -2.9235 3.5037 63.2197 132.6966 0.2008 5 23 0.141 

21 -9.3650 3.1821 62.2577 135.4850 0.2212 5 23 0.141 

22 8.4745 1.8761 89.5661 56.3301 0.1519 6 26 0.2055 

23 3.1011 1.2355 72.3343 106.2774 0.1403 5 22 0.6139 

24 1.7170 0.7141 96.0446 37.5518 0.1315 5 22 1.1568 

25 0.7856 -0.4118 96.1157 37.3457 0.1078 6 22 1.4415 

Lligand efficiency (LE); Efficacy of ligand lipophilicity efficiency LipE (LLE); Ligand efficiency-dependent lipophilicity 
index (LELP); Percentage of absorption (%ABS) 

OPTIMIZE CLEARANCE AND ORAL ABSORPTION 

S+logD and molecular weight are the key factors to determine 
the penetrability of drug candidates [38]. S+logD threshold 
values for high permeability is a lower value for ligands or 
compounds of lower molecular weight [39]. To achieve high 
permeability ligands with molecular weight less than 415 and 
S+logD less than 1.3 [38]. Most of our compounds are within 
the limits of Lipinski rules [22-24] except compound 19. The 
Golden Triangle [40] is a visual image built up from in vitro 

permeability, in vitro authorization, and computational data 
designed to help medicinal chemists obtain stable, pervious, 
and strong drug candidates. The chance of achieving 
effectiveness, stability, and permeability is actualized by 
moving the design properties into an area with a service line 
of S+logD = 0.0 to S+log D = 2.5 at MWt = 200 and a peek 
at S+logD = 0 – 2.5 and MWt = 300, these boundaries give a 
triangular shape, called the golden triangle. For our series of 
compounds, it is seeming that all the compounds except 2 and 
17, have good permeability and low clearance because are 
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concentrated within the golden triangle area as shown in 
Figure 5. These results should help design compounds with 
improved permeability. 

Figure 12. In vitro penetrability and clearance curves over MWt and S+logD. 

CONCLUSION 

In this study, carried out 25 iminoguanidine derivatives based 
on DFT/QSAR prove that our calculated results are similar to 
experimental data taken from literature. MIFs studies, against 
experimented biological activities. The atom-based and 
pharmacophore-based alignment with varying the 3D grid 
spacing method was used to provide the model for MIFs 
analysis. These studies have recognized that the model 
derived through MIFs studies is quite reliable and significant. 
We have investigated that the PLS analysis at 2.0Å 3D grid 
spacing by Open 3DQSAR tools has presented quite 
statistical results in terms of R2 and Q2LOO values and 
showed a high degree of agreement with the experimented 
inhibitory activities. Also, the molecular interaction 
mechanism of inhibitor binding to HemO active binding site 
was explained based on molecular docking binding free 
energy analysis and molecular dynamics simulations. Our 
results suggested that inhibitor can exactly bind to the active 
binding site of HemO to display inhibitory activity and the 
van der Waals interactions could be driving force for the 
binding of inhibitor with HemO. A series of differently 
substituted iminoguanidine has been considered to check its 
potential biological activity. It has been found that these 
compounds should exhibit good cell plasma membrane 
permeability. Likewise, they satisfy Lipinski's rule of five, 
Veber’s rule of two and Ghose’s rule of four, indicating that 
these compounds theoretically would not have oral 
bioavailability problems. In particular, compound 12 which 
has the highest binding energy value of the dataset could be 
considered as a good candidate for biological testing. 
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