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ABSTRACT 
Much plant growth promoting rhizobacteria has having capability of producing siderophore. The name siderophore which is 
derived from iron chelating agent which prevents the entry of plant pathogens into the root system of plants and other parts of 
plant. Among this the symbiotic nitrogen fixing has having more efficiency of producing siderophore which induces both 
plant growth promotion and Inducing systemic resistance in plants. A versatile Plant growth rhizobacter (PGPR) has been 
described which grows on yeast extract mannitol agar. A phytohormone, siderophore has been extracted and estimated from 
the culture medium and appears to produce the zone of inhibition against the fungal pathogens like Aspergillus and 
Sclerotium. 

INTRODUCTION 

Iron is the fourth most abundant element in the earth’s crust 
and the second most common metal following oxygen, 
silicon and aluminum respectively. Despite its relative 
abundance and metabolic value to most organisms, it can be 
a difficult nutrient to obtain. This is because when it is found 
in aerobic conditions and at neutral or physiologic pH, iron 
is oxidized to its ferric state and easily forms insoluble 
oxyhydroxides and other complexes that render it 
unavailable for metabolic use. 

Microbial iron containing or iron binding compounds, most 
of which are classified as “Siderophores” (Greek for Iron 
bearers). The siderophores, as chemical entities, display 
considerable structural variation, the majority of them are 
either hydroxamates or phenolates – catecholates and all 
exhibited a very strong affinity for Fe (III), the formation 
constant lying in the range of 1030 or higher [1]. Neiland [2] 
reviewed the iron metabolism of microorganisms in detail. 
Bacterial and fungal mechanisms of iron have been 
discussed extensively by Lankford [3] and Emergy [4]. 

To overcome iron starvation, B. japonicum can utilize its own 
siderophores and those produced by other organisms [5] In 
assays using an iron-inefficient variety of peanuts, Jadhav et 
al. [6] found that the catechol siderophore of a peanut 
Rhizobium isolate, increased plant growth and chlorophyll 
content compared with plants grown with iron alone. 

Siderophores are produced by PGPR under iron-limited 
conditions. Leeman et al. [7] reported that LPS of P. 
fluorescens strain WCS 374 and WCS 417 are the major 
determinants of ISR under iron-deplete conditions but under 

iron-limited conditions. Induction of ISR by LPS and 
siderophore seems to be complementary rather than additive 
and full induction of resistance by one determinant masks 
contribution by others.  

PRODUCTION OF SIDEROPHORE 

Siderophore production has been reported in various species 
of root nodulating bacteria such in fast growing Rhizobium 
spp. [8-10] and Bradyrhizobium [11]. 

Like other PGPR, different strains of rhizobia, i.e., R. meliloti 
[10], S. meliloti, R. leguminosarum bv. viciae, R. 
leguminosarum bv. trifoli, leguminosarum bv. phaseoli, R. 
tropici [8,12]; Rhizobium sp. [13] and Bradyrhizobium 
[5,6,13,14]; are able to produce siderophore for Fe3+ chelation 
in iron deficient environment [10,15-17]. 

In vitro, some strains of Rhizobium and Bradyrhizobium 
species have been shown, by application of variety of assays, 
to produce and excrete a variety of iron-cheating compounds 
when grown under iron-deficient conditions [15,16].  
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limiting conditions [18], the bound molybdate [19] and to be 
a part of iron transport systems. Reeves et al. [20] observed 
that increase in iron concentration increased nitrogenase 
activity of Azospirillum. Molybdenum starved cells reported 
to have reduced ex planta nitrogenase activity of 
Azospirillum lipoferum D-2 [21].  

Saxena et al. [21] studied the siderophore mediated transport 
of molybdenum in Azospirillum lipoferum strain D-2. They 
reported that a catechol-type compound was secreted by A. 
lipoferum D-2 strain in the growth medium when the cells 
became molybdenum limited. The compound was identified 
as 3, 5-dihydroxybenzoic acid (3, 5-DHBA) which enhanced 
the uptake of molybdenum.  

Siderophore synthesis was repressed when iron was present 
and induced when iron depleted from the culture medium 
[22]. The phenolate siderophores were mainly the amino 
acid conjugates of 2, 3-DHBA [23] and their presence was 
demonstrated in Aerobacter aerogenes, Escherichia coli and 
Salmonella sp. [23,24]. A threonine conjugate of 2, 3-
dihydroxybenzoic acid in Klebsiella oxytoga and E. coli 
[25], a diphenolic conjugate of lysine in Azotobacter 
vinelandii [18] and threonine and glycine conjugates of 2, 3-
Dihydroxybenzoic acid in cowpea Rhizobium RA-1 [26] 
have been reported.    

CLASSES OF SIDEROPHORES 

Siderophores are separated into classes based upon the 
chemical groups involved in iron chelation within the 
siderophore. The two most common classes of Siderophores 
are hydroxymates and phenolate-catecholates. However, 
several siderophores use multiple functional groups to 
chelate the iron and are considered mixed siderophores [27]. 

Hydroxymate siderophores 

The hydroxymate siderophores are seen predominantly in 
fungi but are also produced by some bacteria. The iron 
chelation is provided by a hydroxymate group (-CO-N (O-)-) 
formed from aceylated or formylated hydroxylamines 
usually derived from lysine or ornithine [27]. The 
hydroxymate group is assembled in a two-step process, 
beginning with hydroxylation of the primary side-chain 
amine of ornithine or lysine by a flavin adenosine 
dinucleotide-dependent monooxygenase. The second step 
involves formylation by a methyl transferase, for pyoverdin 
and ornibactin or acetylation by an acetylase, for all other 
hydroxymate siderophores [27]. 

Phenol-catecholate siderophores 

The second most common siderophore class is the phenol-
catecholates, which contain a mono- or di-hydroxybenzoic 
acid group to chelate the iron [1]. This class of siderophores 
has only been observed in bacteria. The catecholate group is 
derived from salicylate or dihydroxybenzoic acid and the 
siderophores have iron binding affinities that range from 
very tight binding for enterobactin from E. coli (Kd=10-52 

M) to fairly weak binding seen in pyochelin from P.
aeruginosa (Kd=5 × 10-5 M) [1].

Other classes of siderophores 

Several other classes of siderophores are recognized. Citrate-
hydroxymate siderophores are a mixed class of bacterial 
siderophores [1]. The siderophores contain derivatives of 
citric acid in which the distal carboxyl group has been 
substituted with hydroxymate groups. Another unusual class 
of siderophores is the mycobactins produced by 
Mycobacterium spp. of bacteria. A variety of other classes of 
siderophores are also known which contain various 
hydroxymate, catecholate and phenolate groups [1]. 

Crowley et al. [28] suggested that siderophores produced by 
root-colonizing microbes provide Fe to plants that can use 
the predominant siderophore types. In conjunction with 
transport mechanisms, ecological and chemical factors can 
also influence the efficacy of siderophores and 
phytosiderophores. They presented a model to incorporate 
these factors to predict conditions that may govern 
competition for Fe in the plant rhizosphere and observed that 
such competition has been a factor in the evolution of broad 
transport capabilities for different siderophores by 
microorganisms and plants. Mahmoud and Abd-Allah [29] 
isolated eighty four microbial isolates and tested their ability 
to produce siderophore and reported that among them 42 
isolates exhibited positive reaction. Pseudomonas 
aeruginosa showed strongly positive reaction while 
Aspergillus was found to produce moderate reactions with 
hydroxamate assay. 

Stenico et al. [30] evaluated the ability of endophytic 
Methylobacterium extorquens for siderophore production. 
The culture supernatants for Methylobacterium showed 
positive for the same and secreted hydroxamate-type of 
siderophores. 

Simionato et al. [31] analysed the siderophore production 
from different strains of Methylobacterium spp. using 
capillary electrophoresis-mass spectrometry and IT mass 
analyzer and the analysis revealed two possible siderophore 
productions of Mol. wt. of 1004.3 and 798.3 Da, according 
to bacterial species. 

Joshi et al. [32] isolated different strains of bacteria from the 
rhizosphere of Arachis hypogea (groundnut) and Vigna 
radiata (Mung bean), in which few fluorescent 
pseudomonads produced hydroxamates in addition to 
catecholates. 

Lacava et al. [33] analyzed the production of siderophore 
production of endophytic Methylobacterium spp. and 
observed that all the strains of Methylobacterium spp. 
showed positive results for CAS assay and found to produce 
hydroxamate-type, but not catechol-type siderophores. 

Lacava et al. [34] studied the production of siderophores by 
endophytic Methylobacterium mesophilicum and revealed 
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that 37 strains of the same showed positive for CAS assay, 
produced hydroxamate-type of siderophores. 

BIO CONTROL ACTIVITY OF SIDEROPHORE 

Competition for nutrients among the biocontrol bacteria and 
pathogen can result in the displacement of pathogen. The 
best understood example of the competition is the iron 
competition. In this, the biocontrol agent produces high Fe3+ 
affinity siderophore that sequester iron in the rhizosphere 
and makes it less available to certain harmful rhizospheric 
microorganism. The latter cannot obtain sufficient iron for 
growth and thus are outcompeted. Rhizobia are proficient to 
produce siderophores and can hamper a widely occurring 
plant pathogen Macrophomina phaseolina [10].  

According to van Loon et al. [35], rhizobacterially induced 
salicylic acid can trigger the SAR pathway as well as ISR in 
some plant species. In radish, induction of systemic 
resistance to Fusarium wilt by two P. fluorescens strains 
WCS 374 and WCS 417 was clearly associated with the 
capacity of these strains to produce salicylic acid in culture 
[7]. The PGPR mediated ISR is often associated with the 
onset of defense mechanism including the increased 
expression of defense enzymes, such as peroxidase [36]. 

Stephens et al. [37] reported the ability of a bacterium to 
inhibit a fungal pathogen when the bacterium was grown in 
the laboratory on synthetic media that favored the 
production of either antibiotic or siderophore and determined 
the biocontrol activity of the bacterium in vivo. 

The role of PPFM siderophore on disease suppression of 
Fusarium sp. and Erwinia amylovora was studied. 
Siderophore production was associated with in vitro 
inhibition of Aphanomyces cochlioides by strains of PPFM, 
but did not correlate with the ability of bacterium to suppress 
Aphanomyces root rot of sugar beet [38,39]. 
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