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ABSTRACT 
Artificial muscles are generally recognized as devices or materials which can mimic the movement of natural muscles by 

contracting, bending, or rotating when acted upon by external stimuli (such as electricity, pH, pressure, magnetic field or 

temperature) and exhibit shape recovery once the stimulus is withdrawn. Similar to natural muscles, fundamental engineering 

properties of artificial muscles are characterized in terms of force generation, response time, and actuation strain. This mini-

review will provide a scientific overview of the fundamental principle of these characteristic and performance properties that 

are key to the feasibility and selection of potential fields of artificial muscles. The article will also demonstrate the recent 

characterization basics of artificial muscles as well as critical matters that need to be addressed and resolved in future. 

INTRODUCTION 

Artificial muscle technology has an outstanding prospect for 

broad future applications in industry, medicine, robotics and 

many other practical fields [1]. These systems generally 

mimic the conventional properties of natural muscles such as 

contraction strain, response time, force generation and 

tension intensity [1-3]. Biological muscles usually offer 20–

40% contraction strain and 0.35 N/mm2 of tension intensity 

that is generated in less than one second with a power to 

mass ratio of 100 W/kg (specific power) [4]. However, an 

ultimate tensile strength of 30 MPa can be achieved by 

human muscles at a contraction strain of 30% [5]. Many 

advantages with artificial muscle technologies stem from 

nature’s ability to fabricate complex structures which range 

from the molecular to the macroscopic length. Since the 

improvement of fabrication technology and the better 

understanding of nature’s mechanisms, several properties 

that include regeneration, nano-structuring and direct 

chemical actuation, have become common in artificial 

muscle actuators. 

Several artificial muscles are popular due to matching or 

exceeding natural muscle in strain, stress and specific power. 

Most of the technologies presented, for instance, feature 

peak stresses that can at least match natural muscle, with the 

peak forces per cross-sectional area in shape memory alloys 

exceeding those of the natural muscle by a factor of 500. 

Unlike mammalian skeletal muscle, some of the 

technologies have a ‘catch-state’ feature, which enables the 

position to be locked against a fixed load without power 

expenditure [6]. Nevertheless, artificial muscles suffer 

performance limitations such as low cycle life and low 

efficiency and these deficiencies limit their applications in 

many practical fields. 

Based on the established limitations of artificial muscles, it 

is possible to optimize their performance in terms of their 

combine’s characteristic properties. Here, we demonstrate 

the key characteristic properties of artificial muscles that are 

crucial to consider before integrating them into biomimetic 

systems. Actuating principles, along with key performance 

indicators, are considered in a general perspective of 

commonly used artificial muscles. 

ACTUATING PRINCIPLES 

There are several characteristic properties of artificial 

muscle that are defined by how the muscle is stimulated. The 

first approach of preparing artificial muscles, namely, 

McKibben pneumatic muscles (PAM) [7] is cheap and 

useful, but they pose limitations in use because of their 

bulky external pump control and driving mechanisms [8]. To 

solve this problem, artificial muscles including piezoelectric 

[9-11] or dielectric elastomer (DEA) [12,13] were produced 

having actuating composites where the mechanism of 

actuation is inherent in the properties and structure of the  
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composite. However, high voltages are required for this type 

of artificial muscle, which limits application outside research 

laboratories [14]. Artificial muscles have also been prepared 

with conducting polymers (CP) [15-22] and ionic polymer 

metal composites (IPMC) [23-31], these improved upon 

previous generations of actuators by decreasing the voltages 

required for actuation. These actuators produce bending 

motions through the movement of ions in an electrolyte but 

need the packaging of integrated electrodes to prevent 

leakage or evaporation of volatile solvent [32]. 

Subsequently, artificial muscles such as nanocarbon yarns 

[33-36], twisted-coiled polymer fibre [3,37,38], shape 

memory alloys (SMA) [39-46] and stimuli-responsive 

polymers [47-48] solved most of the issues of the previous 

devices by creating actuating materials. As reported, these 

actuating materials can produce artificial muscles of high 

power to weight ratios, giant stroke and large force. 

Nonetheless, each of these materials also has some 

limitations which have restricted full realization of their 

application. 

CHARACTERISTIC PROPERTIES 

Artificial muscles either exhibit a single actuation 

characteristic or a combination of performance based on the 

applied stimuli and field of application. Typical property 

interests are stress generation, magnitude and rate of 

actuation strain, materials creep, and hysteresis. The 

following sections demonstrate the basic understanding of 

these properties and the factors that determines the ultimate 

output of the artificial muscles. 

Actuation stress and strain 

Above all, actuation stress and strain are the two crucial 

characteristics of the artificial muscle. Stress is the applied 

force per unit cross-sectional area of the actuator materials; 

while blocking stress is the maximum blocking force per 

unit cross-sectional area in a single stroke that produces 

maximum work output [49]. Generated force scales linearly 

with the cross-sectional area in actuator systems where the 

direction of actuation is normal to the surface [50]. Blocked 

force provides good insight into the muscle’s actuation 

ability under external forces. Linear actuators typically can 

contract/expand when the externally applied force is smaller 

than the blocked force. Strain, typically referred as actuation 

strain, describes the displacement that is normalized by the 

original material length towards the direction of actuation 

[51,52]. Figure 1 shows a comparison of actuation stress as 

a function of actuation strain achieved by several kinds of 

artificial muscle. Strain is regularly used in working devices; 

however, it is not possible to obtain the peak strain while 

operating at peak stress [53]. Strain rate is another strain-

related property that entails the average change in strain per 

unit time throughout an actuator stroke. The maximum strain 

rate is typically experienced at high frequencies and small 

strains. Quicker responses can frequently be gained by 

optimizing geometry and processing and consequently, the 

numbers are often not ultimate limits but rather signify the 

present state of the art [54,55]. 

Figure 1. Comparison of optimum actuation stress as a function of actuation strain of different actuators.

Stiffness 

Stiffness, another key characteristic of the actuator, is 

described by the resistance of an elastic material to the 

deformation by the given force and is a function of both 

material and geometry [56]. Stiffness depends on the 

modulus of elasticity or Young’s Modulus, which is 

theoretically constant for a specific material under specified 

environmental conditions [57]. Stiffness is related to the 

thickness and shape of the formed part of the material [58]. 

In general, stiffness describes the deforming nature of the 

material under applied load although the material tends to 
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return to its original shape once the load is removed. In the 

case when the dimension of the material does not change 

after the removal of the load, stiffness is associated with 

elastic deformation [59]. Figure 2 shows the typical stress-

strain curve of a material which is divided into elastic and 

plastic regions. The initial slope of the curve also provides 

the material’s modulus [60]. It is significant as it governs the 

actuator’s passive capacity to respond to load changes as 

well as disturbances and in conjunction with the density and 

mass controls the frequency beyond which inertial effects 

become significant. The stiffness of several actuating 

materials changes when activated. In the case of mammalian 

skeletal muscle, the stiffness can be changed by a factor of 

50 to assist in control [61]. 

Figure 2. The typical stress-strain curve of a material representing the stiffnesses. 

Creep and stress relaxation 

Creep and stress (force) relaxation are another two important 

characteristics for some materials. Creep defines the slow 

continuous deformation of material at constant stress. Creep 

is the phenomenon where when a persistent and constant 

force is applied, it results in deformation which increases 

curvilinearly over time (Figure 3a) [62]. Once a viscoelastic 

material is subjected to constant strain, the stress originally 

induced by it decays in a time-dependent manner, and this 

phenomenon is known as stress relaxation. The force needed 

to perform a given elongation decreases over time in a 

predictable curvilinear force-relaxation pattern as shown in 

Figure 3b [62]. The loop produced by force-elongation (or 

stress-strain) plots throughout loading and subsequent 

unloading of the specimen (Figure 3c) has been 

demonstrated by mechanical hysteresis. In fact, hysteresis 

has a close relation with fatigue life and crack propagation 

because of energy dissipation during cycles of 

transformation [62]. 

Figure 3. (a) Typical creep behavior. (b) Force-relaxation curve. (c) Mechanical hysteresis tests-the small arrows at the 

bottom graph indicate loading and unloading directions [62]. 
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Response time 

In addition to the above-mentioned properties, response time 

plays a significant role in the field of actuator technologies. 

Some actuators respond quickly while others require high 

response time. For example, pneumatic actuators can 

provide very fast response while most of the SMAs need a 

long response time to actuate [63]. Hydrogel-based actuators 

are still struggling to obtain a fast response when stimulated 

[64]. Because the response time of the hydrogel is nearly 

proportional to the square of the thickness, different shapes 

and sizes of the hydrogel are of research interest. Together 

with fast response, it is also crucial for the actuators to 

provide a long cycle life. Cycle life refers to the number of 

valuable strokes that the material is able to undergo and is 

generally highly reliant on strain as well as stress. A 

repeating pattern of loading and unloading is usually 

performed during the cyclic test; an ideal mechanical 

actuator is expected to provide unlimited cycle life without 

any deformation [65]. Other properties are often necessary 

to describe actuating materials including, temperature 

dependence of the response, coefficient of thermal 

expansion, thermal diffusivity, ionic diffusion coefficients, 

resistivity, minimum displacement, positioning resolution 

and gauge factor. Also, environmental resistance can be a 

substantial factor in many applications. Unfortunately, these 

characteristics are often not known. 

Performance Representation 

Performance of an actuator is often explained as the work 

density, this describes the amount of work produced in one 

actuator cycle normalized by actuator volume (or mass). The 

volume occupied by electrolytes, counter electrodes, power 

supplies etc. are usually excluded in the determination of 

work density, because these additional contributions to 

actuator volume cannot scale linearly with work output [66]. 

Also, the product of maximum stress and maximum strain is 

not considered as work density. Therefore, specific power is 

now often used to define the power output per unit mass of 

the actuator material. The maximum product of stress and 

strain rate divided by density is used to estimate peak power 

density. Usually peak power is lower than the product of 

peak stress and peak strain rate standardized by density due 

to the interdependence of load and rate [67]. 

Power to weight ratio as a function of different actuators’ 

mass, for example, SMA, pneumatic motor, hydraulic 

actuators etc. is shown in Figure 4a [68]. The performance 

of the actuators can be represented as efficiency, defined as 

the ratio of work produced to input energy. Stored electrical 

energy and sometimes thermal energy can be recovered to 

enhance efficiency. Figure 4b shows the efficiency plotted 

as a function of the actuation strain for most of the existing 

actuation methods, including materials such

Figure 4. (a) Comparison of specific power obtained from different actuators [68]. (b) Maximum efficiency plotted versus 

actuation strain for various actuating methods (SMA-shape memory alloy, IPMC-ionic polymer metal composite, DEA-

dielectric elastomer actuator, PAM-pneumatic artificial muscle, FEA-ferroelectric actuator) [69]. 

as SMA piezoelectric materials and hydraulic and 

pneumatic setups. It can be seen that actuation methods 

demonstrating high actuation strain (approximately 100%) 

along with high efficiency are developed on all of the 

hydraulic or pneumatic devices [69]. 

CONCLUSIONS AND RECOMMENDATION 

In this mini-review, we highlighted the current 

characterization basics of artificial muscles that are being 

globally utilized for evaluating the performance. Many 

different approaches have been used for characterizing 

artificial muscles to evaluate the contraction strain, blocking 

force, work density, or power-to-weight ratio. Acceptance of 
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the concept that natural muscles can be the most effective in 

terms of actuation response has meant that efforts to create 

artificial muscles have gained significant attention in recent 

times. However, mimicking the full mix of properties of 

mammalian skeletal muscles has never yet been achieved by 

any artificial muscle characterization techniques. Although 

it is understood that the gap between the lab-based 

experiments and practical application is still substantial, 

more research works are required to narrow the gap and the 

future development of practical applications for artificial 

muscles. One recommendation is to establish integrated 

characterization methods that can address many challenges 

in a one-step experimental technique. It is also important to 

introduce new characteristic terminology that can define the 

overall performance of artificial muscle compared to those 

skeletal. 
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