ANALYTICAL STUDY OF EVALUATING FORECASTING METHODS IN NIGERIAN AIRPORT

Olaniyi Adetayo Adeniran¹

Department of Transport Management Technology, Federal University of Technology, Akure, Nigeria

Received 04 January 2019; Accepted 12 January 2019; Published 28 January 2019

ABSTRACT

Various studies have been carried out to evaluate forecasting methods most especially with a focus on moving average and exponential smoothing. The common approach for evaluating the accuracy of moving average and exponential smoothing were Mean Absolute Deviation (MAD), Mean Square Error (MSE) and Root Mean Square Error (RMSE). This paper, therefore, examines single moving average and exponential smoothing and adopts the coefficient of description (correlation coefficient), coefficient of explanation (regression), Mean Absolute Deviation (MAD), Mean Square Error (MSE) and Root Mean Square Error (RMSE) to evaluate the accuracy of single moving averages and exponential smoothing with different smoothing constants. For single moving average: n=2, n=3, n=4, n=5, n=6, n=7, n=8, n=9, n=10; and for simple exponential smoothing: $\alpha=0.1$, $\alpha=0.2$, $\alpha=0.3$, $\alpha=0.4$, $\alpha=0.5$, $\alpha=0.6$, $\alpha=0.7$, $\alpha=0.8$, $\alpha=0.9$. The study relies on secondary data of revenue passenger demand in Murtala Muhammed International Airport (MMIA) and Mallam Aminu Kano International Airport (MAKIA) from the period of 1995 to 2017. The behaviors of data obtained on different airports were observed, as there seems to be consistency in the MMIA demand than that of MAKIA demand. The implication of the consistency is that the result that emanates for forecast evaluation will be reliable. The study reveals that simple exponential smoothing generates a reliable forecast than the single moving average.

Keywords: Forecasting, Accuracy, Quantitative Techniques, Air Transport, MMIA, MAKIA.

INTRODUCTION

Forecasts serve a crucial need in making rational decisions and planning activities more precisely by handling uncertainty about the future. Efficient prediction is considered an important prerequisite for efficient administration and organization in different areas of application related application areas.

During planning, taking a decision on the most accurate forecasting technique to employ is quite challenging, it that requires a comprehensive analysis of empirical results. Recent findings reveal that the performance evaluation of forecasting models depend on the accuracy measures adopted (Nijat et al., 2016).

Correspondence to: Olaniyi Adetayo Adeniran, Department of Transport Management Technology, Federal University of Technology, Akure, Nigeria, E-mail: adeniranao@futa.edu.ng; 4tynil@gmail.com

Evaluating the performance of the forecasting method is very crucial. In the last three decades, various accuracy measures have been adopted by many scholars as an evaluation criterion. A number of different forecast accuracy measures for both regression and classification problems have been proposed by earlier researchers together with the comments and recommendations on the use of the relevant measures (Mahmou, 1984; Makridakis, 1991; Hyndman & Koehler, 2006; Sokolova & Lapalme, 2009; Power, 2011; Nijat et al., 2016; Adeniran & Ben, 2017; Adeniran & Kanvio, 2018). Such accuracy measures provide necessary and decisive feedback to decision makers for calibrating and refining the model in an effort to improve the preciseness of outcomes (Armstrong & Collopy, 1992). However, research findings suggest that there is no best overall accuracy measure which can be used as a universally accepted single metric for choosing the appropriate forecasting method (Mahmou, 1984). Forecasting approaches can realize extremely different performances depending on the chosen metric. Empirical evaluations reveal that some approaches are superior when error based measures are adopted, while others perform better for the same dataset when different metrics are utilized (Armstrong & Collopy, 1992).

It is pertinent to note that decision makers may be unwilling to generalize forecast from prior research, believing that their situation is different. Also, previous research may have revealed a number of relevant forecasting methods and one would like to narrow the field, which is systematic. Most principles for testing forecasting methods are based on commonly accepted methodological procedures, such as to pre-specify criteria or to obtain a large sample of forecast errors. However, forecasters often violate such principles, even in academic studies. Some principles might be surprising, such as R-square, Mean Square Error, and other models to select the most accurate forecasting model (Armstrong, 2001).

Ryu & Sanchez (2003) evaluated the forecasting method for institutional food service facility. They identified the most appropriate forecasting method of forecasting meal count for an institutional food service facility. The forecasting method analyzed included: naïve model 1, 2 and 3; moving average method, double moving method, exponential smoothing method, double exponential method, Holt's method, Winter method, linear regression and multiple regression method. The accuracy of forecasting methods was measured using mean absolute deviation, mean squared error, mean percentage error, mean absolute percentage error method, root mean squared error and Theil's U-statistic. Their result showed that multiple regressions were the most accurate forecasting method, but naïve method 2 was selected as the most appropriate forecasting method because of its simplicity and high level of accuracy.

Pradeep & Rajesh (2014) studied the evaluation of forecasting methods and their application for sales forecasting of sterilized flavored milk in Chhattisgarh. They applied weekly data spreading from October 2011 to October 2012, on the sales of sterilized flavored milk in a liter. The forecasting method analyzed included: naïve model, moving average, double moving average, simple exponential smoothing; and semi-average method. The accuracy of the forecasting method was measured using mean Forecast Error (MFE), Mean Absolute Deviation (MAD), Mean Square Error (MSE), root mean square Error (RMSE).

Adeniran, Kanyio & Owoeye (2018) study forecasting methods for domestic air passenger demand in Nigeria using two years single moving average and simple exponential smoothing with smoothing constant of 0.9 to forecast the 2018 demand. The two methods of forecasting earlier identified were evaluated and compared with their Mean Squared Deviations (MSD) to determine which method gives the lowest deviation as it will produce the best forecast for the year 2018 domestic air passenger demand in Nigeria using the domestic airport passenger demand from the period of the year 2010 to 2017. It was revealed that the MSD of two yearly single moving averages gave the best the year 2018 forecast as it has a lower MSD when compared to the MSD of simple exponential smoothing with the smoothing constant of 0.9. Similarly, Adeniran & Stephens (2018) study the dynamics for evaluating different forecasting methods for international air passenger demand in Nigeria. They used two single moving averages, four single moving averages and six single moving average, simple exponential smoothing, with smoothing constants of 0.7, 0.8 and 0.9, respectively with the data between the periods of the year 2001 to the year 2017. Single moving average and simple exponential smoothing were compared using Mean Squared Deviation (MSD). It was revealed that simple exponential smoothing with constant 0.8 will give a better forecast.

Evaluation of different forecasting methods for international air passenger demand in Murtala Muhammed International Airport (MMIA) and Mallam Aminu Kano International Airport (MAKIA), Nigeria was carried out in this study. The forecasting methods analyzed include: single moving average (n=2, n=3, n=4, n=5, n=6, n=7, n=8, n=9, n=10) and simple exponential smoothing method (α =0.1, α =0.2, α =0.3, α =0.4, α =0.5, α =0.6, α =0.7, α =0.8, α =0.9). The accuracy measures of forecasting method were the coefficient of description (correlation coefficient), the coefficient of explanation (regression), Mean Absolute Deviation (MAD), Mean Square Error (MSE) and Root Mean Square Error (RMSE).

METHODOLOGY

This study examines single moving average and exponential smoothing, and adopts the coefficient of description (correlation coefficient), coefficient of explanation (regression), Mean Absolute Deviation (MAD), Mean Square Error (MSE) and Root Mean Square Error (RMSE) to evaluate the accuracy of single moving averages and exponential smoothing with different smoothing constants. For single moving average: n=2, n=3, n=4, n=5, n=6, n=7, n=8, n=9, n=10; and for simple exponential smoothing: α =0.1, α =0.2, α =0.3, α =0.4, α =0.5, α =0.6, α =0.7, α =0.8, α =0.9. The study relies on secondary data of revenue passenger demand in MMIA and MAKIA from the period of 1995 to 2017.

RESULTS AND DISCUSSION

From Table 1 and Figure 1, the revenue passenger demand in MMIA is more than the revenue passenger in MAKIA by over 1000%. This signifies that the MMIA terminal is more utilized and there is a need for government attention on its infrastructures than other international airports, also there is need for government to come up with strategies that will drive international passengers to a less patronized airport like MAKIA. An example of such a strategy is the development of tourism in the airport location. Also, from Figure 1, the behaviors of data obtained on the different airports were observed; there seems to be consistency and predictability of revenue passenger demand in MMIA than the revenue passenger demand in MAKIA. The implication of this consistency is that the result that emanates from forecast evaluation will be reliable and suitable for the forecast.

Years	Revenue passenger demand in MMIA	Revenue passenger demand in MAKIA
Yr 1995	1,664,485	123,464
Yr 1996	1,693,567	82,958
Yr 1997	1,158,792	141,820
Yr 1998	1,000,414	153,545
Yr 1999	1,205,487	208,103
Yr 2000	1,421,909	154,082
Yr 2001	1,791,485	225,632
Yr 2002	1,906,385	216,854
Yr 2003	1,840,037	222,228
Yr 2004	1,943,686	216,537
Yr 2005	2,102,601	240,702
Yr 2006	2,152,315	246,444
Yr 2007	2,430,224	219,666
Yr 2008	2,688,595	217,235
Yr 2009	2,324,469	134,760
Yr 2010	2,409,087	146,854
Yr 2011	2,619,190	975,881
Yr 2012	3,232,462	155183
Yr 2013	3,877,840	122,146
Yr 2014	2,582,288	175,336
Yr 2015	3,024,078	162,486
Yr 2016	2,945,914	202,589
Yr 2017	2,832,418	182,543

Table 1. Demand for revenue passengers in MMIA and MAKIA from 1995 to 2017.

Source: Nigerian Civil Aviation Authority, 2018

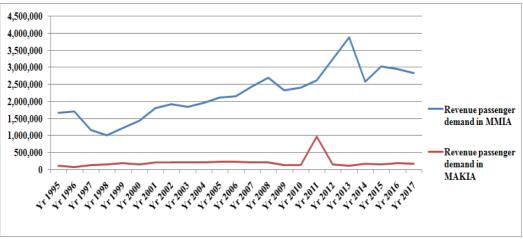


Figure 1. Line graph showing revenue passenger demand in MMIA and MAKIA.

Forecast Evaluation Using the Single Moving Average

From Tables 2 and 3, forecasts were obtained from two, three, four, five, six, seven, eight, nine and ten yearly single moving averages with twenty-three years data of revenue passenger demand in MMIA and MAKIA. From Figures 2 and 3, it was revealed that the lines of forecast and demand have similar trend from 1995 to 2017 which might be easily predictable without any critical analysis, but there seems to be a situation of rising and falling which might not be easily predictable without critical analysis. Hence, there is a need to evaluate the accurate forecasting technique that will produce a reliable 2018 forecast.

International Journal of Tourism & Hotel Business Management, 1 (1)

Years	Demand	n=2	n=3	n=4	n=5	n=6	n=7	n=8	n=9	n=10
Yr 1995	1,664,485									
Yr 1996	1,693,567									
Yr 1997	1,158,792	1679026			-		-			
Yr 1998	1,000,414	1426180	1505615							
Yr 1999	1,205,487	1079603	1284258	1379315						
Yr 2000	1,421,909	1102951	1121564	1264565	1344549					
Yr 2001	1,791,485	1313698	1209270	1196651	1296034	1357442				
Yr 2002	1,906,385	1606697	1472960	1354824	1315617	1378609	1419448			
Yr 2003	1,840,037	1848935	1706593	1581317	1465136	1414079	1454006	1480316		

 Table 2. Computation of forecast using single moving average for revenue passenger demand in MMIA.

Yr 2013	Yr 2012	Yr 2011	Yr 2010	Yr 2009	Yr 2008	Yr 2007	Yr 2006	Yr 2005	Yr 2004
3,877,840	3,232,462	2,619,190	2,409,087	2,324,469	2,688,595	2,430,224	2,152,315	2,102,601	1,943,686
2925826	2514139	2366778	2506532	2559410	2291270	2127458	2023144	1891862	1873211
2753580	2450915	2474050	2481096	2423711	2228380	2066201	1962108	1896703	1845969
2646302	2510335	2463094	2398901	2343434	2157207	2009660	1948177	1870398	1739954
2654761	2494313	2400938	2339641	2263484	2093773	1989005	1916839	1780700	1633061
2617338	2437313	2351215	2273648	2192910	2062541	1956085	1834351	1684832	1527620
2550906	2389497	2292997	2211704	2151978	2023819	1879774	1744513	1587058	1474930
2494868	2333771	2236377	2173539	2106916	1948580	1795488	1651501	1533524	1502260
2433625	2278912	2199711	2131089	2030804	1866014	1707147	1596755	1551307	1520285
2374267	2241659	2158888	2060171	1948272	1779454	1652311	1606436	1562625	

Yr 2017	Yr 2016	Yr 2015	Yr 2014
2,832,418	2,945,914	3,024,078	2,582,288
2984996	2803183	3230064	3555151
2850760	3161402	3230863	3243164
3107530	3179167	3077945	3034645
3132516	3067172	2944173	2892610
3046962	2957491	2840889	2858607
2955837	2867059	2819133	2797410
2876916	2844751	2770519	2716773
2855991	2798693	2701830	2648531
2813415	2734055	2641907	2578047

International Journal of Tourism & Hotel Business Management, 1 (1)

Source: Authors' work

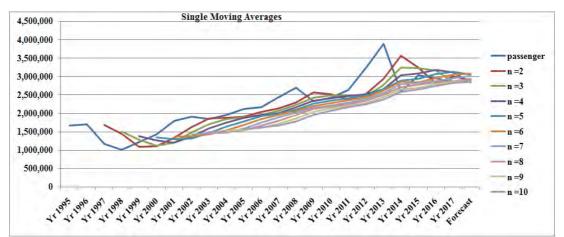
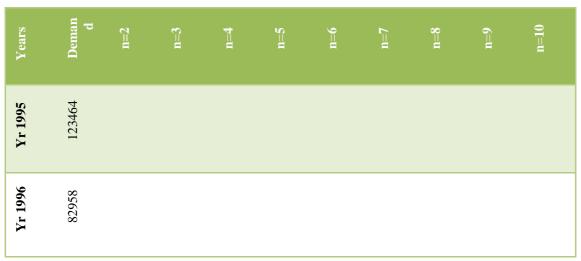



Figure 2. Line graph showing the comparison of revenue passenger demand in MMIA and forecasts from single moving averages.

 Table 3. Computation of forecast using a single moving average for revenue passenger demand in MAKIA.

Yr 1997	141820	103211								
Yr 1998	153545	112389	116081							
Yr 1999	208103	147683	126108	125447						
Yr 2000	154082	180824	167823	146607	141978					
Yr 2001	225632	181093	171910	164388	148102	143995				
Yr 2002	216854	189857	195939	185341	176636	161023	155658			
Yr 2003	22228	221243	198856	201168	191643	183339	168999	163307		
Yr 2004	216537	219541	221571	204699	205380	196741	188895	175653	169854	
Yr 2005	240702	219383	218540	220313	207067	207239	199569	192350	180195	174522
Yr 2006	246444	228620	226489	224080	224391	212673	212020	204710	197723	186246
Yr 2007	219666	243573	234561	231478	228553	228066	217497	216323	209347	202595

Yr 2017	Yr 2016	Yr 2015	Yr 2014	Yr 2013	Yr 2012	Yr 2011	Yr 2010	Yr 2009	m Yr~2008
182543	202589	162486	175336	122146	155183	975881	146854	134760	217235
182538	168911	148741	138665	565532	561368	140807	175998	218451	233055
180137	153323	150888	417737	425973	419165	166283	190554	227782	235604
165639	153788	357137	350016	353170	368683	179629	204526	231012	230837
163548	318206	315080	306965	325983	338879	192992	211761	228117	229115
298937	289648	285027	292010	308263	323473	200944	212557	227135	227072
277211	267521	275342	281675	299432	311649	203171	213939	225667	226866
259404	261235	268383	277271	292091	299760	205553	214303	225662	217768
254719	256616	265945	273208	283696	291145	206809	215562	217709	216694
251214	255599	263421	267541	277549	283716	208691	209414	216748	210379

Source: Authors' work

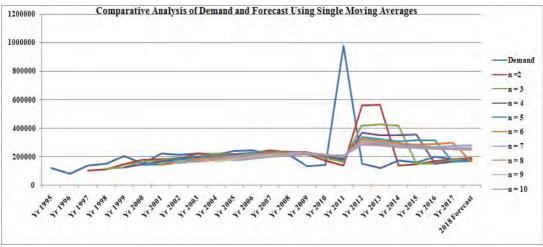


Figure 3. Line graph showing the comparison of revenue passenger demand in MAKIA and forecasts from single moving averages.

Forecast Evaluation Using the Simple Exponential Smoothing

From Tables 4 and 5, forecasts were obtained from simple exponential smoothing with smoothing constants of α =0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9. From Figures 4 and 5, it was revealed that the lines of forecast and demand have a similar trend from 1995 to 2017. It was also revealed that all forecasts follow a similar pattern. The suitability of forecasts produced by simple exponential smoothing is quite better and easily understandable than the forecasts produced by a single moving average. Although a mere examination of the line graph does not mean that the forecast of simple exponential smoothing will be more reliable than single moving average. Hence, there is a need to evaluate the accurate forecasting technique that will enhance a robust and reliable 2018 forecast.

Years	Deman d	α=0.1	α=0.2	a=0.3	α=0.4	a=0.5	a=0.6	α=0.7	a=0.8	α=0.9
Yr 1995	1664485									
Yr 1996	1693567	1664485	1664485	1664485	1664485	1664485	1664485	1664485	1664485	1664485
Yr 1997	1158792	1667393	1670301	1673210	1676118	1679026	1681934	1684842	1687751	1690659

 Table 4. Computation of forecast using simple exponential smoothing for revenue passenger demand in MMIA.

									lagemen	II, I (I)
Yr 1998	1000414	1616533	1568000	1518884	1469187	1418909	1368049	1316607	1264584	1211979
Yr 1999	1205487	1554921	1454482	1363343	1281678	1209662	1147468	1095272	1053248	1021570
Yr 2000	1421909	1519978	1404683	1315986	1251202	1207574	1182279	1172422	1175039	1187095
Yr 2001	1791485	1510171	1408128	1347763	1319485	1314742	1326057	1347063	1372535	1398428
Yr 2002	1906385	1538302	1484800	1480880	1508285	1553113	1605314	1658158	1707695	1752179
Yr 2003	1840037	1575111	1569117	1608531	1667525	1729749	1785957	1831917	1866647	1890964
Yr 2004	1943686	1601603	1623301	1677983	1736530	1784893	1818405	1837601	1845359	1845130
Yr 2005	2102601	1635811	1687378	1757694	1819392	1864290	1893574	1911861	1924021	1933830
Yr 2006	2152315	1682490	1770423	1861166	1932676	1983445	2018990	2045379	2066885	2085724
Yr 2007	2430224	1729473	1846801	1948511	2020531	2067880	2098985	2120234	2135229	2145656
Yr 2008	2688595	1799548	1963486	2093025	2184408	2249052	2297728	2337227	2371225	2401767

International Journal of Tourism	& Hotel Business Management, 1 (1)

Yr 2009	2324469	1888453	2108507	2271696	2386083	2468824	2532248	2583185	2625121	2659912
Yr 2010	2409087	1932054	2151700	2287528	2361437	2396646	2407581	2402084	2384599	2358013
Yr 2011	2619190	1979758	2203177	2323996	2380497	2402867	2408484	2406986	2404189	2403980
Yr 2012	3232462	2043701	2286380	2412554	2475974	2511028	2534908	255529	2576190	2597669
Yr 2013	3877840	2162577	2475596	2658526	2778569	2871745	2953440	3029382	3101208	3168983
Yr 2014	2582288	2334103	2756045	3024320	3218278	3374793	3508080	3623303	3722514	3806954
Yr 2015	3024078	2358922	2721294	2891711	2963882	2978540	2952605	2894592	2810333	2704755
Yr 2016	2945914	2425437	2781850	2931421	2987960	3001309	2995489	2985232	2981329	2992146
Yr 2017	2832418	2477485	2814663	2935769	2971142	2973612	2965744	2957709	2952997	2950537

Source: Authors' work

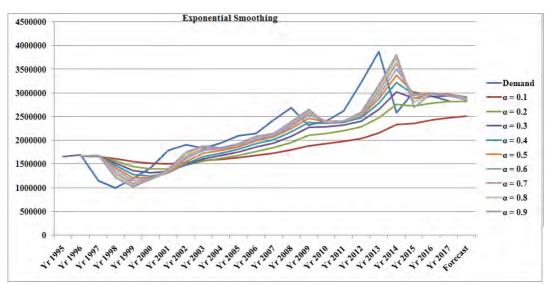


Figure 4. Line graph showing the comparison of revenue passenger demand in MMIA and forecasts from simple exponential smoothing.

 Table 5. Computation of forecast using simple exponential smoothing for revenue passenger demand in MAKIA.

YF 1996 YF 1995 Y Carls 82958 123464 Deman d
82958 1234
141820 119413
3 153545 3 121654
208103 124843

002 Yr 2001	554 225632	135260	60 145542	61 153817	58 159842	163574	165119	164683	11 162529
3 Yr 2002	216854	144298	161560	175361	186158	194603	201427	207347	213011
Yr 2003	22228	151553	172619	187809	198437	205729	210683	214002	216085
Yr 2004	216537	158621	182540	198135	207953	213978	217610	219760	220999
Yr 2005	240702	164412	189340	203655	211387	215258	216966	217504	217429
Yr 2006	246444	172041	199612	214769	223113	227980	231208	233743	236047
Yr 2007	219666	179482	208979	224272	232445	237212	240349	242634	244365
Yr 2008	217235	183500	211116	222890	227334	228439	227939	226556	224606
Yr 2009	134760	186874	212340	221194	223294	222837	221517	220031	218709
Yr 2010	146854	181662	196824	195263	187880	178798	169463	160341	151550
Yr 2011	975881	178181	186830	180741	171470	162826	155897	150900	147793

Yr 2017	Yr 2016	Yr 2015	Yr 2014	Yr 2013	Yr 2012
182543	202589	162486	175336	122146	155183
220489	222477	229143	235122	247674	257951
227111	233241	250930	269828	306749	344640
214889	220160	244877	274681	340053	419283
202233	201995	228334	263667	358014	493234
194109	185629	208772	242207	362268	569354
191091	173843	190879	214194	352265	647888
191939	167089	177829	183645	327144	728387
194919	164241	171260	154957	286199	810263
198665	163346	171085	132827	228959	892940

Source: Author's work

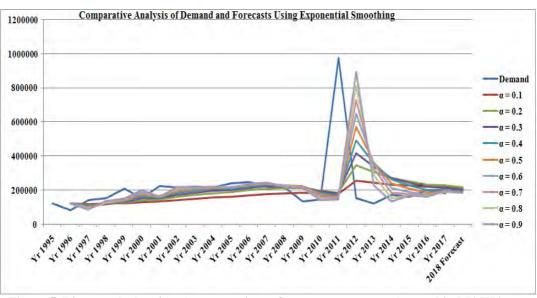
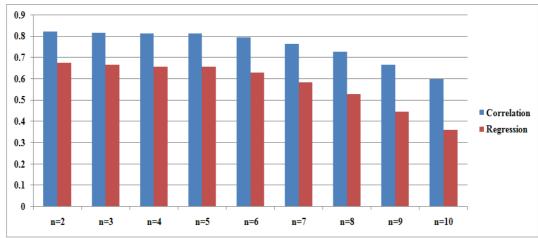
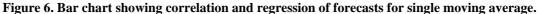


Figure 5. Line graph showing the comparison of revenue passenger demand in MAKIA and forecasts from simple exponential smoothing.

EVALUATION OF FORECASTS

The accuracy of the forecasting methods adopted in this study was coefficient of description (correlation coefficient), the coefficient of explanation


(regression), Mean Absolute Deviation (MAD), Mean Square Error (MSE) and Root Mean Square Error (RMSE).


From Table 6 and Figures 6-9 for MMIA, the coefficient of description (correlation coefficient) and coefficient of explanation (regression) reveal that 2 yearly moving average (n=2) is most accurate, as it has the highest correlation and regression value. The correlation and regression value imply that the forecast of 2 yearly moving averages has a strong relationship with revenue passenger demand in MMIA. Also, Mean Absolute Deviation (MAD), Mean Square Error (MSE) and Relative Mean Square Error (RMSE) for single moving average shows that the 2 yearly moving average (n=2) has the lowest value. Hence, for the three assessment of accuracy for the single moving average, 2 yearly moving averages are the most accurate. It can be deduced from the result that the lower than for the single moving average, the more realistic or reliable the forecast. This deduction is possible because the time series data are ordered overtime as it satisfies the assumption of linearity, and large sample size of non-experimental or observational data with respect to time. This corroborates the views of Hsiao (2003) and Wooldridge (2001).

Evaluation	n=2	n=3		n=4	n=5 n=5	n=5 n=6	n=4 n=5 n=6	n=4 n=5 n=7 n=8	n=4 n=5 n=8 n=9
Correlation Ev	0	10							
Corre	0.822	0.816	0.810		0.810	0.810 0.792	0.810 0.792 0.764	0.810 0.792 0.764 0.727	0.810 0.792 0.764 0.727 0.666
Regression	0.675	0.666	57		0.656	0.656 0.628	556 228 84	0.656 0.628 0.584 0.529	56 28 44 44
Re	0.6	0.6	0.657		0.6	0.6	0.656 0.628 0.584	0.6 0.5 0.5	0.656 0.628 0.584 0.529 0.444
MAD	84741.05	148086.1	214055.2		283370.1	283370.1 347714.2	283370.1 347714.2 393220	283370.1 347714.2 393220 435940.3	283370.1 347714.2 393220 435940.3 48890.9
MSE	1.80E+11	1.88E+11	1.99E+11		2.14E+11	2.14E+11 2.47E+11	2.14E+11 2.47E+11 2.84E+11	2.14E+11 2.47E+11 2.84E+11 3.28E+11	2.14E+11 2.47E+11 2.84E+11 3.28E+11 3.90E+11
RMSE	291.1032	384.8196	462.661		32.3251	532.3251 589.673	532.3251 589.673 627.0726	532.3251 589.673 627.0726 660.2578	532.3251 589.673 627.0726 660.2578 699.2074

Table 6. Evaluation of accuracy for single moving averages for MMIA.

Source: Author's work

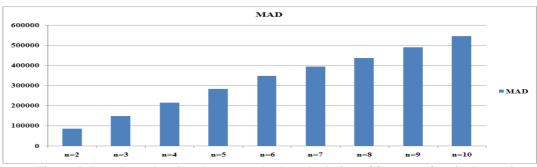
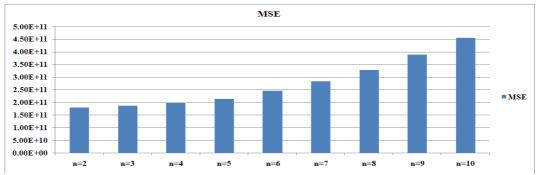
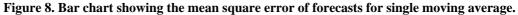
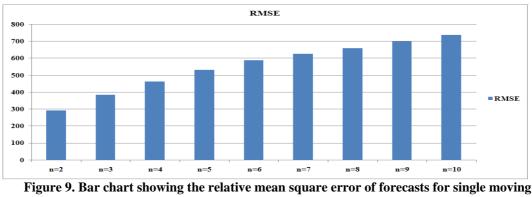





Figure 7. Bar chart showing the mean absolute deviation of forecasts for single moving average.

average.

From the analysis shown in Table 7 and Figures 10-13 for MAKIA, the coefficient of description (correlation coefficient) and coefficient of explanation (regression) reveals that 10 yearly moving average (n=10) is most accurate, as it

has the highest correlation and regression value. The correlation and regression value imply that the forecast of 10 yearly moving averages has a strong relationship with revenue passenger demand in MAKIA. Also, Mean Absolute Deviation (MAD) for single moving average shows that the 5 yearly moving average (n=5) has the lowest value. Also, Mean Square Error (MSE) for single moving average shows that the 5 yearly moving average (n=5) has the lowest value, and Relative Mean Square Error (RMSE) for single moving average shows that the 5 yearly moving average (n=5) has the lowest value, and Relative Mean Square Error (RMSE) for single moving average shows that the 5 yearly moving average (n=5) has the lowest value. Hence, for the three evaluation of accuracy for the single moving average, 5 yearly moving averages is the most accurate. Although the data involved in MMIA and MAKIA are both historical and long on twenty-three years, their evaluated results are quite different. This difference can be as a result of the fact that data of MMIA satisfies the assumption of linearity and consistency, while the data of MAKIA does not.

Evaluation									
Eval	n=2	n=3	n=4	n=5	9=U	n=7	n=8	n=9	n=10
Correlation	0.193	0.201	0.236	0.225	0.277	0.283	0.290	0.295	0.298
Regression	0.037	0.041	0.056	0.050	0.077	0.080	0.084	0.087	0.089
MAD	6625.857	6674.1	6700.158	3486.778	3819.647	7020.813	9787.8	11367.14	13399.23
MSE	5.1491E+10	4.51E+10	4.37E+10	4.26E+10	4.35E+10	4.46E+10	4.64E+10	4.89E+10	5.19E+10
RMSE	81.39937	81.69517	81.85449	59.04894	61.80329	83.79029	98.93331	106.6168	115.755

Table 7. Evaluation of accuracy for single moving averages in MAKIA.

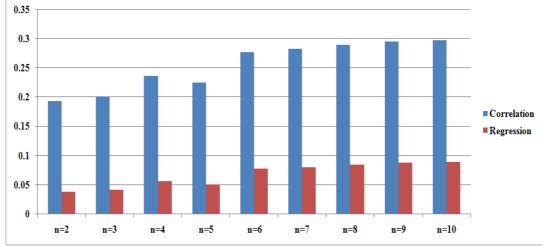


Figure 10. Bar chart showing the correlation and regression of forecasts for single moving average.

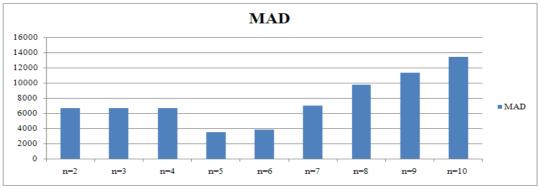


Figure 11. Bar chart showing the mean absolute deviation of forecasts for single moving average.

Figure 12. Bar chart showing the mean square error of forecasts for single moving average.

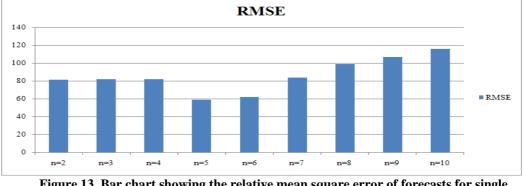


Figure 13. Bar chart showing the relative mean square error of forecasts for single moving average.

Furthermore, the analysis is shown in Table 8 and Figures 14-17, coefficient of description (correlation coefficient) and coefficient of explanation (regression) for simple exponential smoothing for MMIA reveals that a smoothing constant of 0.7 is most accurate, as it has the highest correlation value and regression value. The correlation value and regression value implies that the forecast of smoothing constant of 0.7 has a strong relationship with revenue passenger demand in MMIA. Also, Mean Absolute Deviation (MAD) and Relative Mean Square Error (RMSE) for simple exponential smoothing for MMIA show that the smoothing constant of 0.9 has the lowest value. However, Mean Square Error (MSE) for simple exponential smoothing shows that the smoothing constant of 0.7 has the lowest value. Since three methods of assessing the forecasting techniques explain that simple exponential smoothing with smoothing constant of 0.7 gives the lowest value, hence the results of Mean Square Error (MSE) will be retained. On this note, it can be deduced that for simple exponential smoothing, 0.7 smoothing constant is the most accurate for forecasting as it tends closer to 1. This corroborates the study of Hossein (2015); Lucey (2007); Montogomery & (1997); Kahn & Mentzer (1995); Brown (1963) that the higher the values of smoothing constant nearer to 1, the more sensitive the forecast becomes the current condition.

RMSE	MSE	MAD	Regressio n	Correlatio n	Evaluatio n
621.0304	4.08E+11	385678.8	0.587	0.766	α=0.1
512.0656	2.56E+11	262211.2	0.644	0.802	α=0.2
433.4985	1.98E+11	187921	0.676	0.822	a=0.3
377.0652	1.73E+11	142178.1	0.695	0.834	α=0.4
335.5497	1.61E+11	112593.6	0.705	0.840	a=0.5
304.1709	1.56E+11	92519.95	0.711	0.843	a=0.6
279.787	1.54E+11	78280.6	0.713	0.844	α=0.7
260.2499	1.55E+11	67730	0.712	0.844	α=0.8
244.0965	1.59E+11	59583.09	0.708	0.842	α=0.9

Table 8. Evaluation of accuracy for simple exponential smoothing in MMIA.

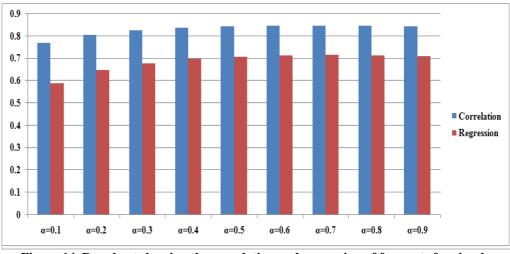


Figure 14. Bar chart showing the correlation and regression of forecasts for simple exponential smoothing.

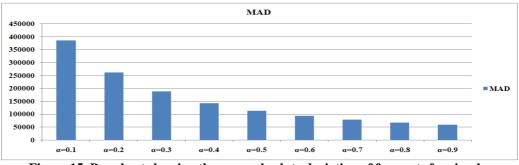


Figure 15. Bar chart showing the mean absolute deviation of forecasts for simple exponential smoothing.

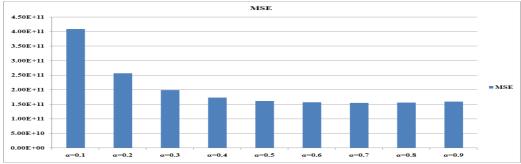


Figure 16. Bar chart showing the mean square error of forecasts for simple exponential smoothing.

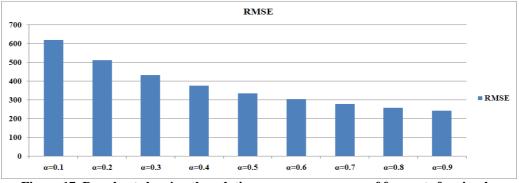


Figure 17. Bar chart showing the relative mean square error of forecasts for simple exponential smoothing.

The analysis is shown in Table 9 and Figures 18-21 revealed that coefficient of description (correlation coefficient) and coefficient of explanation (regression) for simple exponential smoothing for MAKIA reveals that smoothing constant of 0.5 and 0.6 is most accurate, as they have the highest correlation and regression value. The correlation and regression value implies that the forecast of smoothing constants of 0.5 and 0.6 has a strong relationship with revenue passenger demand in MAKIA. Also, Mean Absolute Deviation (MAD) for simple exponential smoothing for MAKIA shows that the smoothing constant of 0.9 has the lowest value. However, Mean Square Error (MSE) for simple exponential smoothing shows that the smoothing constant of 0.1 has the lowest value, meanwhile in support of MAD but contrary to MSE, Relative Mean Square Error (RMSE) for simple exponential smoothing shows that the smoothing constant of 0.9 has the lowest value. Hence, the evaluation of accuracy for simple exponential smoothing, MAD and RMSE will be acceptable, therefore 0.9 smoothing constant is the most accurate for forecasting. This corroborates the study of Lucey (2007) that the higher the value of smoothing constant nearer to 1, the more sensitive the forecast becomes the current condition.

RMSE	MSE	MAD	Regressio n	Correlatio n	Evaluatio n
205.857 5	3.29E+10	42377.3 2	000.0	0.013	α=0.1
146.731 5	3.4E+10	21530.1 4	0.003	0.054	α=0.2
111.274	3.63E+10	12381.9 1	0.008	0.091	α=0.3
89.75497	3.89E+10	8055.955	0.013	0.113	α=0.4
76.78867	4.19E+10	5896.5	0.015	0.123	α=0.5
68.80889	4.52E+10	4734.664	0.015	0.123	α=0.6
63.39845	4.89E+10	4019.364	0.014	0.117	α=0.7
59.13967	5.3E+10	3497.5	0.011	0.107	α=0.8
55.36449	5.77E+10	3065.227	0.00	0.095	α=0.9

Table 9. Evaluation of accuracy for simple exponential smoothing in MAKIA.

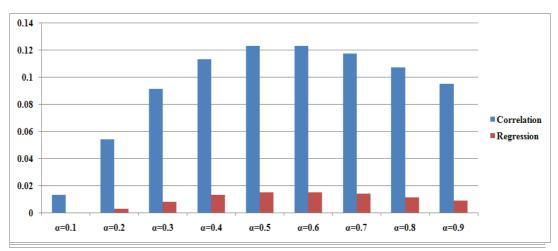


Figure 18. Bar chart showing the correlation and regression of forecasts for simple exponential smoothing.

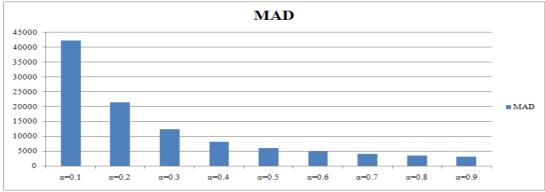


Figure 19. Bar chart showing the mean absolute deviation of forecasts for simple exponential smoothing.

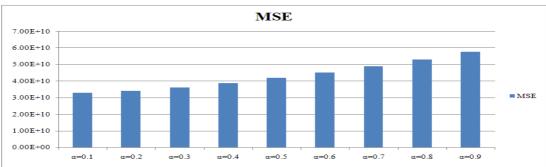


Figure 20. Bar chart showing the mean square error of forecasts for simple exponential smoothing.

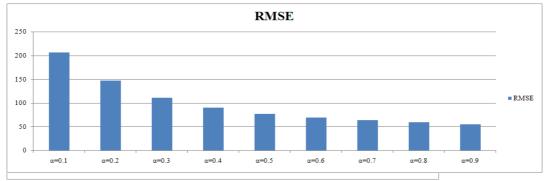


Figure 21. Bar chart showing the relative mean square error of forecasts for simple exponential smoothing.

In addition, there is a need to find out which forecasting method is more accurate from single moving average and simple exponential smoothing. The evaluation of forecast with data in MAKIA will not be used as it might give an inconclusive result, but the data in MMIA will be useful and reliable.

Hence, from the data of revenue passenger in MMIA, correlation and regression reveal that simple exponential smoothing with a smoothing constant of 0.7 has a strong relationship than 2 yearly single moving averages. This corroborates the findings achieved by Mean Square Deviation (MSD) which shows that simple exponential smoothing with smoothing constant of 0.7 has low deviation than 2 yearly single moving averages. This implies that simple exponential smoothing constant of 0.7 will give accurate forecast than 2 yearly single moving averages. Also, simple exponential smoothing with a smoothing constant of 0.9 was revealed by Mean Absolute Deviation (MAD) and Relative Mean Square Error (RMSE) to have low deviation than 2 yearly single moving averages. This implies that simple exponential smoothing with smoothing constant of 0.9 will give accurate forecast than 2 yearly single moving averages. This implies that simple exponential smoothing with smoothing constant of 0.9 will give accurate forecast than 2 yearly single moving averages. This implies that simple exponential smoothing with smoothing constant of 0.9 will give accurate forecast than 2 yearly single moving averages. It can, therefore, be affirmed that simple exponential smoothing is more reliable than single moving average.

The findings of this study corroborate the findings of Adeniran & Stephens (2018); Hossein (2015); Lucey (2007); Hsiao (2003) & Wooldridge (2001) Montogomery & Johnson (1997); Kahn & Mentzer (1995); Brown (1963), but it opposes the findings of Adeniran, Kanyio & Owoeye (2018) which chooses single moving average over simple exponential smoothing. The findings of Adeniran, Kanyio & Owoeye (2018) seems different because the sample size of their data is lesser (n=7). In order to achieve a more plausible result for time series analysis, a larger sample size of non-experimental is requested. From simple exponential smoothing with smoothing constant of 0.9, the 2018 forecast of international air passenger travel demand in Murtala Muhammed International Airport will be 2,844,230.

CONCLUSION

This study identified the most appropriate forecasting method based on accuracy and ease of use (simplicity) to forecast the future demand of international air passenger in Murtala Muhammed International Airport. Data involved in MMIA and MAKIA are both historical and long on twenty-three years, but their evaluated results are quite different. This difference can be because the data of MMIA satisfies the assumption of linearity and consistency, while the data of MAKIA does not. Hence, the evaluation of forecast with data in MAKIA will not be used as it might give an inconclusive result, but the data in MMIA will be useful and reliable. From simple exponential smoothing with smoothing constant of 0.7, the 2018 forecast of revenue passenger demand in MMIA will be 2,870,005. Also, from simple exponential smoothing with smoothing constant of 0.9, the 2018 forecast of revenue passenger demand in MMIA will be 2,844,230.

The following contributions emanate from this study: time series analysis requires large sample size of non-experimental or observational data with respect to time; the observational data with respect to time must satisfy the assumption of linearity and consistency; the higher the value of smoothing constant nearer to 1, the more sensitive the forecast become the current conditions; the lower the value

International Journal of Tourism & Hotel Business Management, 1 (1)

of n for the single moving average, the more realistic or reliable the forecast; and simple exponential smoothing is more reliable than single moving average.

REFERENCES

Adeniran, A.O., Kanyio, A.O. & Owoeye, A.S. (2018). Forecasting methods for domestic air passenger demand in Nigeria. *Journal of Applied Research on Industrial Engineering*, 5(2), 146-155.

Adeniran, A.O. & Stephens, M.S. (2018). The dynamics for evaluating forecasting methods for international air passenger demand in Nigeria. *Journal of Tourism and Hospitality*, 7(4), 366.

Armstrong, J.S. (2001). Evaluating forecasting methods. In: Principles of Forecasting: A Handbook for Researchers and Practitioners (Ed. J. Scott Armstrong). Kluwer.

Armstrong, J.S. & Collopy, F. (1992). Error measures for generalizing about forecasting methods: Empirical comparisons. *International Journal of forecasting*, 8(1), 69-80.

Hossein, A. (2015). Forecasting by smoothing techniques. Retrieved from: https://home.ubalt.edu/ntsbarsh/Business-stat/otherapplets/ForecaSmo.htm

Hsiao, C. (2003). Analysis of panel data. *Cambridge University Press*. 2nd Edn.

Hyndman, R.J. & Koehler, A.B. (2006). Another look at measures of forecast accuracy. *International Journal of Forecasting*, 22(4), 679-688.

Kahn, K.B. & Mentzer, J.T. (1995). Forecasting in consumer and industrial markets. *Journal of Business Forecasting Methods & Systems*, 14, 21-28.

Lucey, T. (2007). Quantitative techniques. 6th Edn. Book Power/ELST, 568.

Mahmoud, E. (1984). Accuracy in forecasting: A survey. Journal of Forecasting, 3(2), 139-159.

Makridakis, S. (1993). Accuracy measures: Theoretical and practical concerns. International Journal of Forecasting, 9(4), 527-529.

Montgomery, D.C. & Johnson, L.A. (1997). Forecasting and time series analysis. *McGraw-Hill*: New York.

Nijat, M., David, E., Peter, F. & Peter, L. (2016). Evaluating forecasting methods by considering different accuracy measures. *Procedia Computer Science*, 95, 264-271.

Powers, D.M. (2011). Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. *Journal of Machine Learning Technologies*, 2, 37-63.

Pradeep, K.S. & Rajesh, K. (2013). Demand forecasting for sales of milk product (Paneer) in Chhattisgarh. *International Journal of Inventive Engineering and Sciences*, 1, 10-13.

Pradeep, K.S. & Rajesh, K. (2014). Evaluation of forecasting methods and their application for sales forecasting of sterilized flavored milk in Chhattisgarh. *International Journal of Engineering Trends and Technology*, 8, 98-104.

Ryu, K. & Sanchez, A. (2003). The evaluation of forecasting method at an institutional food service dining facility. *Journal of Hospitality Financial Management*, 11(1), 27-45.

Sokolova, M. & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. *Information Processing & Management*, 45(4), 427-437.

Wooldridge, J.M. (2001). Econometric analysis of cross section and panel data. The MIT Press.