Journal of Pharmaceutics and Drug Research

JPDR, 5(3): 613-614 www.scitcentral.com

Short Communication: Open Access

A Brief Overview of Nerve Gas

David M Benjamin*

*Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, USA.

Received June 06, 2022; Revised June 27, 2022; Accepted June 30, 2022

HISTORY

In March 1995, a terrorist cult group led by an individual named Aum Shinrikyo ("Supreme Truth") terrorized the people of Tokyo by releasing an organophosphate nerve gas called Sarin into the Tokyo subway system. This terrorist attack killed 12 people and injured more than 5500 people. The gas had been concealed in lunchboxes and soft drink containers and was released at several points along the Tokyo subway system. Sarin is a liquid at room temperature and becomes a gas as it mixes with the air in the surrounding area. Because the gas was poorly volatilized (converted to a gas) many victims first experienced ophthalmic and respiratory signs and symptoms due to direct contact. Had the Sarin been more completely volatilized, many more people would have been injured or killed. If the attack had been carried out during the summer when people wore sleeveless shirts and shorts, the toxic agent could have been absorbed through the skin and, once again, many more people would have been injured or killed. This was the same toxic nerve gas allegedly used by the Syrian government against its citizens who were protesting against the government.

Organophosphate nerve gases like Sarin, Tabun, Soma and diisopropyl fluorophosphate (DFP) were developed in Germany during the 1930s and used by the Nazis against American and allied troops. Because these chemicals are heavier than air, they tend to stay close to the ground and can easily incapacitate people at ground level or in trenches.

CHEMISTRY

Organophosphate nerve gases are structurally related to a similar class of pesticides/insecticides which include Malathion and Parathion. The organophosphates derive their name because their structures represent modifications of phosphoric acid. A schematic representation of the simple phosphoric acid molecule, H₃PO₄, is shown in Figure 1.

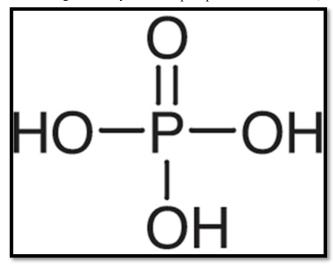


Figure 1. Chemical structure of Phosphoric acid.

Corresponding author: David M Benjamin, Ph.D., Clinical Pharmacologist & Toxicologist, F-AAFS, FCP, FCLM, FASHRM, Affiliate Associate Professor, Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, USA; E-mail: medlaw@doctorbenjamin.com

Citation: Benjamin DM. (2022) A Brief Overview of Nerve Gas. J Pharm Drug Res, 5(3): 613-614.

Copyright: ©2022 Benjamin DM. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

613 J Pharm Drug Res (JPDR)

In order to convert the simple phosphoric acid molecule to a deadly nerve gas, the hydroxyl groups (OH) are substituted or replaced by different organic substituents such as a methyl (CH3), ethyl (C2H5) or isopropyl side chains (C₃H₇ arranged in sort of a "T" configuration around the P molecule, or a sulfur (S) or fluorine (F) molecule.

MECHANISM OF ACTION (TOXICITY)

Organophosphate compounds produce their toxic effects by interfering with normal nerve conduction. When nerves send messages to one another, they communicate by releasing a neurotransmitter from the end of the first (pre-synaptic) neuron which diffuses across a space called the "synapse" between the neurons and the space is called called the synapse or synaptic cleft. When the neurotransmitter reaches the postsynaptic neuron, it stimulates or depolarizes the postsynaptic neuron causing it to generate an "action potential" which travels down the neuron and then synapses either with another neuron or with its end-organ, which can be a muscle or gland. Although there are many different neurotransmitters in the human nervous system, the organophosphates specifically interfere with those neurons using acetylcholine (ACh) as a neurotransmitter. These neurons are called cholinergic neurons. In order to inactivate the acetylcholine to avoid continued stimulation and allow the neuron to return to its resting state, postsynaptic cholinergic neurons possess an enzyme called cholinesterase (AChE) which hydrolyzes (cleaves with water) the acetylcholine and permits the neuron to repolarize and return to its resting state. It is the cholinesterase enzyme that is the target of organophosphate chemical weapons. When AChE is inactivated, the cholinergic neurons continue to fire producing a constellation of cholinergic signs and symptoms throughout the body, the most common of which are excessive salivation and increased secretions in the lungs as well as constriction of the pupils of the eye accompanied by an urge to urinate and defecate. The most common cause of death is paralysis of the diaphragm and the intercostal muscles involved with breathing which leads to suffocation. However, depending on the physical-chemical properties of the particular nerve gas, distribution to the brain can also occur which may result in seizures.

ANTIDOTES

The immediate antidotes for organophosphate nerve gas toxicity consist of the administration of atropine or scopolamine which block the effect of acetylcholine at the junction where the nerves synapse with the muscles involved with respiration or the size of the pupil. The gastrointestinal tract is also a target causing an urge to urinate and defecate. In order to regenerate the AChE, another type of agent called an oxime must be administered. The most common of these is pralidoxime, aka 2-PAM. If only atropine is administered, victims can go on to develop both intermediary and long-term neurologic toxicity of both the peripheral nervous

system in the body and the central nervous system in the brain. Damage to the brain can be devastating and cognitive function declines significantly, and severely exposed victims can develop degenerative changes in the brain which mimic severe Alzheimer's disease. That is why 2-PAM should be administered to all individuals poisoned with organophosphate nerve gas, or pesticides or insecticides containing organophosphates.

CLOSING STATEMENT

Organophosphate nerve gases are horrible weapons. They create panic, horror, and pandemonium among exposed victims. They are not easily focused, like shooting a gun. They depend upon the vehicle used to deploy the weapon and its degree of volatilization, the liquid form or gas may be carried into far ranging areas by the wind or prevailing weather conditions. It is no wonder that the civilized world has enacted strong measures to deter their use under any conditions, and requires offending nations to submit to inspections which will ensure that these highly toxic agents have been destroyed.

Recent talk about Russia using nerve gas weapons on the Ukrainians and their allies is chilling. Efforts must be made to stop Russia from holding hostage, enslaving and murdering thousands of innocent people. The US has chemical weapons' detectors, and technicians trained to use them. Steps must be taken to prevent release of nerve gas, not use antidotes after a nerve gas attack. Too many innocent people will be injured or killed.

Come on America, get out on your "big boy" pants and find the criminals who are planning to use these weapons on us. We know who they are. Their names are on the news every day. The government also knows who they are. Time for President Biden to take some well-chosen steps to find the criminals who are planning to use these weapons on us and pay them a visit before they render us incapable of protecting ourselves and tell us "Dasvidaniya" (Goodbye or Bye bye!) (Pronounced Da svidaniya or Do svidaniya" [До свидания (Dasvidaniya)], or as the Mafia would say, "Il baci di morte" (the kiss of death).

This paper is no joke. Every day we Americans get closer and closer to death, as our adversary, the Russians, do not know moderation, and want nothing less than to destroy us and everything we have worked for as Americans since before 1776, or almost 250 years. We cannot allow this to occur. Putin knows no limits. Pregnant women, babies and children all have targets on their backs, and so do we adults. Do you want to end up on a list of casualties or go home to your family tonight?