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ABSTRACT 
The main aim of this study was to enhance the water holding capacity of the reclaimed desert sandy soil using an 
environmentally friendly biological technique that would minimize the loss of irrigation water from plant root zone. by 
downward seepage. Two environmentally friendly bacteria (Azotobacter chroococcum and Lactobacillus fermentum) capable 
of producing insoluble polysaccharides as a soil pores plugging agent were selected. The polysaccharides production 
efficiencies of these bacteria were evaluated. The effectiveness of the polysaccharides in enhancing the water holding 
capacity of the soil was evaluated. The result showed that the sandy soil used in this study had a particle density of 2.58 
g/cm3, a bulk density of 1.6 g/cm3and a porosity of 37.98 %. The particle size varied from 0.150 to 2.000 mm with most of 
the soil particles having a diameter within the range of 0.425-0.850 mm indicating that the soil was free of silt and clay. This 
soil had a loose texture, high infiltration rate and low water holding capacity. Azotobacter chroococcum and Lactobacillus 
fermentum were capable of producing levan from sucrose. The levan yield was 0.248 glevan/g sucrose (62.78% of theoretical 
yield) and 0.371 g levan/g sucrose (93.92% of theoretical yield) for Azotobacter chroococcum and Lactobacillus fermentum, 
respectively. The cell yield was 0.074 g cell/g sucrose (47.69 % of theoretical yield) and 0.062 g cell/g sucrose (56.92 % of 
theoretical yield) for Azotobacter chroococcum and Lactobacillus fermentum, respectively. The polymer was effective as a 
plugging agent to plug the pores of the high permeability sandy soil. The results showed that increasing the concentration of 
bacteria had no significant effect on the amount of leachates collect from the soils treated with both bacteria. However, the 
leachates collected from the soils treated with Azotobacter chroococcum were much larger than those collected from the soils 
treated with Lactobacillus fermentum. Also, the leachates collected from the control (soils received no bacterial treatment) 
were much larger than soils treated with both bacteria. These microorganisms were suitable for production of levan from 
sucrose, fixing nitrogen in soil and producing growth hormones, thereby improving the water holding capacity of the soil and 
enhancing its nutrient content and stimulating plant growth. 

Keywords: Sandy soil, Particle density, Bulk density, Porosity, Water holding capacity, Infiltration, Seepage, Bio-
cementation, Bio-logical sealing 

INTRODUCTION  

Egypt is a transcontinental country situated mostly in north-
eastern Africa, with the Sinai Peninsula in Western Asia. 
Egypt has a coastline at the Mediterranean Sea in north, and 
the Gulf of Suez and the Red Sea in east. The country lies in 
the dry arid region except for the northern part which enjoys 
a Mediterranean climate during winter (December-March) 
which is cool, windy and humid, with occasional rains. 
Summer in Egypt (June-September) is very dry with 
extremely hot temperatures into the 32-38°C, sometimes 
breaking into 48°C. Shoulder seasons (April-May and  
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October-November) are particularly pleasant months but 
with no rain. Egypt receives 20-200 mm of annual 
precipitation along the narrow Mediterranean Coast and 
nearly 0 mm in the central and the southern parts of the 
country [1, 2]. 

The total land area of Egypt is 1,000,450 km2, of which 
32,425 km2(3.24%) is the Delta which is made of silt 
deposits carried by the River Nile and in which is most 
agricultural land and live most of the population. The 
Western Desert of Egypt (681,000 km2 or 68.07%) is an area 
of the Sahara which lies west of the River Nile up to the 
Libyan border, and from the Mediterranean Sea to the border 
with Sudan. The Eastern Desert (223,000 km2 or 22.29%) 
extends east from the Nile to the Red Sea, and from the 
Mediterranean Sea to the border with Sudan. The area of 
Sinai is 61,000 km2 (6.10%) and Northern Lakes cover an 
area of 3025 km2 (0.30%) and is main source of aquaculture 
in Egypt. Generally, deserts are barren areas of landscape 
(Figure 1) where little or no precipitation occurs and, 
consequently, living conditions are hostile for plant and 
animal life. With 96% of Egypt’s land is uninhabitable 
desert (never receives any rain) in both sides of the Nile, the 
population is concentrated around the narrow Nile Valley 
and Nile Delta, with smaller numbers along the 
Mediterranean and Red Sea coasts [3]. 

Egypt’s worrying population boom poses very real dangers 
to the economic development of the country and is 
considered as a major challenge to the government. In 2000, 
the United Nations estimated that Egypt’s population would 
hit 96 million in 2026. However, in 2017, there were some 
104.5 million Egyptian, of which 9.5 million lived outside 
the country. With current population growth rate (2.6 million 
babies born in 2016)), Egypt’s population is expected to 
grow to 128 million by 2030 [4]. According to Egypt’s 
Statistical Agency, the population growth rate must be one-
third that of economic growth to prevent living standards 
from deteriorating [5]. Once the breadbasket of the Roman 

Empire, Egypt began to import large quantities of wheat in the 
1980s and is now importing 50% of its food [6]. 

The quest to bring desert land under cultivation has been a 
cornerstone of Egyptian Government Agricultural Policy 
since the 1952. The total area reclaimed reached 1.92 million 
feddans (feddan=0.42 hectare) in 1987. By 2002, the total 
reclaimable land was estimated at 2.8 million feddans [7]. 
However, the increase in agricultural land has not kept pace 
with the population increase in Egypt since 1950’s. As a 
result, the country is facing unprecedented challenges as the 
agricultural lands are increasingly strained due to urban 
expansion and depletion of scarce water resources as the Nile 
faces upstream challenges with Ethiopia building Africa’s 
largest dam [8]. Land reclamation in the Egyptian context 
means converting desert areas into agricultural land by 
extending water canals into the desert, enhancing soil 
fertility, and providing infrastructure for new village 
construction. If the unlimited desert sandy soil can be 
improved and provided with water, it can grow a lot of food 
for the growing population.  

Therefore, in 2013, the Egyptian Government began an 
effort to reclaim approximately 1.5 million feddan of desert 
lands for agricultural use as a first stage of a major project 
aiming at the reclamation of 4 million feddan. Due to Nile 
water shortage, ground water will be used to irrigate 
1,322,000 feddan (88.5%) and surface water will be used to 
irrigate 172,000 feddan (11.5%). The hope is that, with new 
wells, desalination plants and better infrastructure (new 
towns), farmers will be able to grow more wheat [2]. 
Example of this new development is the land reclamation 
project that began in 2015 in the Farâfra Depression (980 
km2) in Western Desert. The white desert of Farâfra (Figure 
2) has been converted into agricultural land capable of
producing wheat, potato, radish and other produces (Figure
3). By adding the new farmland to Egypt’s current 8.4 million
Fedden, it is hoped to free the population from the narrow
confines of the Nile Valley and have the capacity to meet food
production needs [9].

Figure 1. Nature of Eastern and Western deserts of Egypt.
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Egypt desert soils originated by mechanical disintegration 
and wind deposit. They are mostly loamy sand (of 95-97% 
sand and 3-5% clay). These soils are coarse, porous and 
well-drained and have a red to brown color. They contain 
salts and are high in potassium, phosphorus and nitrates. 
These soils have very low moisture, very low organic matter 
and a basic pH (7.5-8.0). Generally, the sandy soils of 
Sahara are one of the poorest types of soil for growing plants 
because of their very low nutrients and very poor water 
holding capacity [10-14]. In addition, surface irrigation in 
this dry climate can cause the water to evaporate very 
quickly leaving salts behind on the soil surface causing 
salinization. Furthermore, water uses (agricultural, 
industrial, municipal, transportation and electricity 
generation) and management in Egypt are very complex and 
there is a great deficit between the demand and supply [15]. 
Therefore, it is important to consider (a) water conservation 
through use of new irrigation technology, (b) new water 
sources such as desalination and municipal wastewater 
treatment and reuse and (c) improving the quality of the soil 
and its water holding capacity [4,7,16].The farmer are 
already adopting new irrigation technology to conserve 
water [7] and the government has imparked on major 
desalination, and wastewater treatment and use projects as 
well as drilling wells for underground water [17]. However, 
building an adequate soil structure in the newly claimed land 
is still a major challenge. 

In order to improve the soil properties, farmers are planting 
crops that fixes nitrogen such as alfalfa, but this process is 
unduly time-consuming for many farmers [4]. There are, 
however, several other techniques for land improvement 
including: (a) addition of biochar which significantly and 
permanently increase soil cation exchange capacity (the 
soil’s ability to hold nutrients), creates habitats for beneficial 
microbes and increases water retention [18-22], (b) addition 
of organic matter such as well-rotted manure or finished 
compost which decomposes quickly (since microbial activity 
is so fast in hot climate) and improves the physical 
properties of the soil [23,27], (c) application of chemical 
grouting to stabilize soil structure and modify the pore 
geometry of the soil by chemical reactions or ionic exchange 
resulting in a reduced fluid movement and improved water 
holding capacity and reduced water and nutrient seepage 
[28-32] and (d) application of microorganisms to alter the oil 
structure in order to reduce porosity and enhance water and 
nutrient retention [33-48].  

In order to improve the soil properties, farmers are planting 
crops that fixes nitrogen such as alfalfa, but this process is 
unduly time-consuming for many farmers [4]. There are, 
however, several other techniques for land improvement 
including: (a) addition of biochar which significantly and 
permanently increase soil cation exchange capacity (the 
soil’s ability to hold nutrients), creates habitats for beneficial 
microbes and increases water retention [18-22], (b) addition 

of organic matter such as well-rotted manure or finished 
compost which decomposes quickly (since microbial activity 
is so fast in hot climate) and improves the physical 
properties of the soil [23,27], (c) application of chemical 
grouting to stabilize soil structure and modify the pore 
geometry of the soil by chemical reactions or ionic exchange 
resulting in a reduced fluid movement and improved water 
holding capacity and reduced water and nutrient seepage 
[28-32] and (d) application of microorganisms to alter the oil 
structure in order to reduce porosity and enhance water and 
nutrient retention [33-48].  

There are many microbiological activities that can be used to 
alter soil structure and improve the properties of soils which 
include bio-cementation (or bio-mineralization), gleization 
and bio-sealing. Bio-cementation is the process where 
microorganisms produce elemental compounds such as 
calcium carbonate as a basis for bio-grout that can improve 
the mechanical properties of the soil and decrease its 
porosity [33-37]. Gleization is a process in which breakdown 
of soil structure takes place by strong oxidizing or reducing 
gelatinous agents which are the products of microbial 
metabolisms [38-41]. Soil bio-sealing is a process in which 
microbially induced compounds are utilized to plug the soil 
pores and reduce soil porosity, leading to increased water 
holding capacity and reduced loss of water and nutrient 
through seepage [42-48].  

Natural bio-seal (biological soil crust) can develop from the 
intimate association between soil particles and 
microorganisms that live within soil such as cyanobacteria, 
green algae, fungi, bacteria, lichens and bryophytes [44]. 
They are typical of arid and semi-arid regions but can occur 
in most ecosystems [45-46]. Some strains of bacteria 
produce water insoluble polysaccharides which appear to be 
promising selective plugging agents that can be used to 
create bio-seal in the sandy soil of Egypt [49,50]. Microbial 
polysaccharides which have potential in the sealing 
mechanisms include dextran, xanthan, curdlan, indicant, 
pullulan, heteroglycan and zenflox-polysaccharides. This 
study proposes to investigate the possibility of applying 
biological sealing into the sandy soil of reclaimed Egyptian 
deserts and evaluate its effectiveness in improving water 
retention. 

OBJECTIVES 

The main aim of this study was to enhance the water holding 
capacity of the reclaimed desert sandy soil using 
environmentally friendly biological technique that will 
minimize the loss of irrigation water by downward seepage 
out of the plant root zone. The specific objectives were: (a) 
to select environmentally friendly bacteria capable of 
producing insoluble polysaccharides as a plugging agent in 
order to minimize soil porosity, (b) evaluate the 
polysaccharides production efficiency of these bacteria and 
establish the optimum concentrations of the bacterial 
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Figure 2. White desert of Farâfra before reclamation.

Figure 3. Fields of crops in newly reclaimed agricultural land of Farafra. 
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cultures and (c) evaluate the effectiveness of the 
polysaccharides in enhancing the water holding capacity of 
the sandy soil. 

MATERIALS AND METHODS 

Selection of polysaccharide 

The polysaccharide levan was selected for this study. Levan 
is a polymer made up of fructose (a monosaccharide sugar) 
connected in 2, 6 beta glycosidic linkages as shown in 
Figure 4 [51, 52]. Levan can be in both branched and linear 
structures (Figure 5) of relatively low molecular weight 
[52]. In the branched version, levan forms a very small, 
sphere-like structure. This structure has basal chains of 9 
units long which contain 2, 1 branching, allowing for the 

methyl ethers to form and create a spherical shape. The ends 
tend to contain a glucosyl residue. The branched structure of 
levan tends to be more stable than the linear structure. 
However, the amount of branching and length of 
polymerization tends to vary among different species. The 
shortest levan is 6-kestose, essentially a chain of two 
fructose molecules and a terminal glucose molecule [52-53]. 

Levan contains a diverse set of properties (Table 1). The 
beta 2, 6 linkages of levan allow for it to be insoluble in 
water, oil and many organic solvents (methanol, ethanol, and 
isopropanol. The branching of levan also allow for it to have 
a large amount of tensile and cohesive strength, while the 
hydroxyl groups contribute to adhesion with other molecules 
[52-55]. 

Figure 4. Structural Formula of Levan [51,52]. 

Figure 5. Levan forms [52]. (a) Linear form with beta 2,6 glycosidic linkages. (b) Branched from with beta 2,1 glycosidic 
linkages. 

Levan is diversity distributed in plants and microorganisms. 
It is usually found in the stems and leaf tissues of 

Agropyroncristatum, Dactylisglomerata, Pea secunda, 
Ttriticumaestivum and Pachysadra terminalis [56, 57]. 

Levan is also produced as exopolysaccharides usually from 
sucrose (a disaccharide sugar containing glucose and 
fructose) based substrates by a variety of microorganisms 

including bacteria, fungi and algae. However, there are some 
reports indicating that microbial levan can be produced from 
fructose, glucose and raffinose substrates [56, 58, 59]. The 
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main reaction in levan biosynthesis is the transfructosylation 
by the extracellular enzyme levansucrase. The enzyme forms 
the 2, 1 linkages in the linear basal chains of levan to allow 

for branching points to occur. This production of levan is 
sensitive to temperature, oxygen concentration, pH and other 
factors [56, 60-62]. 

Table 1. The main properties of levan [51-70]. 

Property Description 
Molecular Formula C18H32O16 
Molecular Weight 504.4 g/mol 
Solubility Water and oil insoluble due toβ-(2→ 6) linkage 
Viscosity Low viscosity (0.07-0.18 dL/g for molecular weight 16-24 

million Da) 
Particle Size Nanoparticle in water = 224.3 nm 

Nanoparticles in ethanol = 251.8 nm 
Stability High stability to heat, acid and alkali media 

Melting point = 225 oC 
Glass transition temperature = 141 oC 
Boiling point = 900 oC 

Enthalpy of Vaporization 150 kJ/mol 
Ionic Bonding Non-ionic 
Assembling Self-assembled in aqueous solution 
Tensile Strength Up to 10.3 MPa (1500 psi) 
Polarity Amphiphilic (poses water and fat loving properties) 
Shape or Form Amorphous (lacking clear structure) 
Chemical Compatibility Compatible with salts and surfactants 
Biomedical Benefits Non-toxic 

Antioxidant 
Anti-inflammatory 
Anticarcinogenic 
Antihyperlipidemic 
Antidiabetic 
Ameliorate stress 
Hyperglycaemic 
Prebiotic and immuno-nutrient 
Not hydrolyzed by human digestive enzymes 
Nanocarrier system of peptides, proteins and drugs 

Selection of microorganism 

Selection of microorganisms used in this study was based on 
the criteria shown in Table 2. As the land will be used for 
agriculture production, contaminated soil with pathogens 
could spread diseases to crops and vegetables or to healthy 
animals and human. Thus, the selected microorganisms must 
be non- pathogenic. Microbial cells smaller than the average 
pore sizes of the soil are desirable. Insoluble polysaccharide 
is required to plug the soil pores and form stable sealing. 
Arthrobacter and Bacillus are the most common bacterial 
genera found in soils and any microbes introduced into to 
the soil for the purpose of clogging the soil pores (bio-
sealing) must compete with these indigenous bacteria for 
substrate [42,49,50]. 

Table 3 shows some of the levan producing bacteria. The 
bacterial species Azotobacter chroococcum and 

Lactobacillus fermentum were selected for this study. 
Azotobacter chroococcumare capable of producing levan 
and have a full range of enzymes needed to perform nitrogen 
fixation (ferredoxin, hydrogenase, and an important enzyme 
nitrogenase). Owing to their ability to fix molecular nitrogen 
and produce growth hormones, and therefore increase the 
soil fertility and stimulate plant growth, Azotobacter species 
are widely used in agriculture as a source of nitrogen 
biofertilizer [71]. Lactobacillus fermentum bacteria are a 
levan producing bacteria. The use of these two 
microorganisms would be suitable for production of levan 
from sucrose, fixing nitrogen in soil and producing growth 
hormones, thereby improving the water holding capacity of 
the soil and enhancing its nutrient content and stimulating 
plant growth. The scientific classifications of Azotobacter 
chroococcum and Lactobacillus fermentum are shown in 
Table 3 and their biological and biochemical characteristics 
are shown in Table 4. 
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Table 2. Selection criteria of microorganisms used in the study. 

Criteria Descriptions 

Pathogenicity As the treated soil will be used for agricultural production, 
contaminated crops and vegetables can spread the diseases to 
healthy animals and human. Thus, the selected microorganism 
must be non-pathogenic  

Size Cells size must be smaller than the average pore diameter of the 
soil (the average pore diameter of agricultural soils is 7 - 15 μm 
and for sandy soil that drains freely by gravity is >150 μm) 

Type of Polymer Produced Non-soluble polysaccharide required to form stable sealing 
Competition with Soil Microorganisms Arthrobacter and Bacillus species are the most dominant soil 

microorganisms and the selected microorganisms must be able to 
compete with these as well as other microorganisms in the soil 
such as yeast and fungi. 

Soil collection and preparation 

The soil was collected from the Teaching and Experimental 
Farm of the Faculty of Agriculture, Cairo University. About 
100 kg of soil were collected in plastic bags and transported 
to the Bioengineering Laboratory. The visible organic matter 
was removed from the soil and soil clumps were crushed.  

A soil sample of 500g was used to determine the particle 
size distribution using a mechanical sieving apparatus 
(Vibratory Sieve Shaker, Series AS200, Retsch GMBH, 
Haan, Germany. The pan was first placed onto the sieving 
apparatus. The sieves with the smallest mesh were stacked 
on the top of the pan and successively larger meshes were 
placed above. The sample was placed into top sieve and the 
lid was placed on top of the stack. The shaker was turned on 
for 30 min. The soil collected from each sieve was weighed 
and the percentage of each soil fraction from the original soil 
weight was calculated.  

Soil samples of 50 g each were used to measure the soil 
particle density, bulk density and porosity. A soil sample of 
50 g was placed in a 100 ml graduated cylinder and the 
actual volume of the soil sample was determined. Another 
soil sample of 50 g was placed into a graduated cylinder 
containing 100 ml of water. The volume of water that 
resulted from the addition of soil is considered the volume of 
the soil particles. The particle density is defined as the 
weight of the soil particles divided by their volume. The 
bulk density is defined as actual weight of the soil divided 
by its apparent volume.  The soil porosity is defined as these 
were calculated as follows: 

 ρp = W/Vp (1) 

 ρb=W/Vb  (2)  

 P=(ρb-ρp)/ρb  (3) 

where: 

P = Porosity (%) 

Vb= Volume of the soil(cm3) 
Vp= Volume of the particles (cm3) 
W = Weight of the soil (g) 
ρb= Soil bulk density (g/cm3) 
Vp=Particles density (g/cm3) 

The rest of the soil was placed in 10 plastic bags, each 
containing 1 kg of soil. The bags placed in an autoclave 
(Tabletop Autoclave, Tuttnauer 2340M, Alpha Scientific, 
Vancouver, British Columbia, Canada) for sterilization at a 
temperature of 121°C and a pressure of 103 KPa for 20 min. 
This process was carried out to kill any soil microorganisms. 
The sterilized soil was used later to test the effectiveness of 
bio-cementation and bio-sealing (clogging of the soil pores). 

The rest of the soil was placed in 10 plastic bags, each 
containing 1 kg of soil. The bags placed in an autoclave 
(Tabletop Autoclave, Tuttnauer 2340M, Alpha Scientific, 
Vancouver, British Columbia, Canada) for sterilization at a 
temperature of 121°C and a pressure of 103 KPa for 20 min. 
This process was carried out to kill any soil microorganisms. 
The sterilized soil was used later to test the effectiveness of 
bio-cementation and bio-sealing (clogging of the soil pores). 

Preparation of the growth medium and microbial 
cultures 

Samples of Azotobacter chroococcum and Lactobacillus 
fermentum (Figure 6) were obtained from the Department of 
Microbiology, Faculty of Agriculture, Ein Shams University 
and the Department of Microbiology, Faculty of Agriculture, 
Cairo University, respectively. Liquid growth medium was 
prepared using Bacto® Nutrient Broth, which was obtained 
from Difco Laboratories, Detroit, Michigan, USA. 

The Nutrient broth is composed of a simple peptone and a 
beef extract. The peptone contributes organic nitrogen in the 
form of amino acids and long-chained fatty acids while the 
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Table 3. Some levan producing bacteria. 

Microorganism Reference 

Acetobacter acetiSG- Loewenberg and Reese [72], Moonmangmee et al. [73], Tomulescu 
et al. [74] 

Acetobacter diazotrophicusSNG- Tomulescu et al. [74], Hemandez et al. [75], Arrieta et al. [76], 
Tambera et al. [77], Batista et al. [78] 

Acetobacter PasteurianusSNG- Loewenberg and Reese [72], Tomulescu et al. [74], Perumpuli et al. 
[79], Minakami et al. [80], Tayama et al. [81] 

Acetobacter xylinumSG- Srikanth et al. [56], Tomulescu et al. [74], Tayamaetal [81], Jasson et 
al. [82]. Wong et al. [83] 

Acinetobacter nectarisPG- Gozalez-Garcinuno [84], Bansal et al. [85], Tabernero et al. [86] 

Actinomyces viscosusHAG+ Pabst [87], Warner and Miller [88], Miller and Somers [89], Igarashi 
et al. [90] 

AchromobacterxylosoxidansHG- Han [91], Yamasato et al. [92] 

AerobacteraerogenesHG- Han [91], Srinivasan and Quastel [93], Wilkinson et al. [94] 

Aerobacter levanicumSG- Evans and Hibbert [95], Takeshita et al. [96], Feingold and Gehatia 
[97] 

ArthrobacterUreafaciensSG+ Tomulescu et al. [74], Han [91], Song et al. [98], Tanaka et al. [99], 
Tanaka et al. [100] 

AzotobacterchroococumSG Tomulescu et al. [74], Hestrin and Goldblum [101], De La Vega et 
al. [102], Han [103] 

Bacillus arrophilusHG+ Tomulescu et al. [74], Bansal et al. [85], Abou-Taleb et al. [104] 

Bacillus atrophaeusSG+ Tomulescu et al. [74], Bansal et al. [85], Hestrin and Goldblum [101] 

Bacillus amyloliquefaciensSG+ Tomulescu et al. [74], Han [91], Tian et al. [105] 

Bacillus lentusSG- Tomulescu et al. [74], Bansal et al. [85], Abou-Taleb et al. [104] 

Bacillus licheniformisSG+* Ghaly [42], Ghaly et al [49], Ramsay et al. [54],Tomulescu et al. 
[74], Bansal et al. [85], Xavier et al. [106], Kekez et al. [107], 
Mamay [108], Larpin et al. [109], van Dyke et al. [110] 

BacillusmegateriumSG+ Tomulescu et al. [74], Evans and Hibbert [95], Strube et al. [111] 

Bacillus mesentericusSG+ Tomulescu et al. [74], Han [91], Tanaka et al. [112] 

Bacillus methylotrophicusG+ Tomulescu et al. [74], Zhang et al. [113], Li et al. [114], Jadan et al. 
[115] 

Bacillus polymyxaSG+ Han and Clark [51], Tomulescu et al. [74], Bansal et al. [85], Han 
and Watson [116], Han [117], Liu et al. [118] 

Bacillus subtilisSG+ Shih et al. [60], Bansal et al. [85], Jensen et al. [119], Ing-Lung et al. 
[120], Abdel-Fattah et al. [121], Benigaret al. [122], Ahmed [123], 
Esawy et al. [124], Vaidya and Prasad [125], Goncalves et al. [126], 
Abdul Razack [127], Abdel-Fattah et al. [128] 

BradyrhizobiumdenitrificansSNG- Bansal et al. [85], Sutherland [129] 

BradyrhizobiumelkaniiSNG- Bansal et al. [85], Sutherland [129], Sucawara et al. [130] 
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BradyrhizobiumembiopenseSNG- Bansal et al. [85], Sutherland [ 129] 

Bradyrhizobium japonicumSNG- Bansal et al. [85], Sutherland [129], Sudtachat et al. [1317], Dake 
[132] 

BradyrhizobiumoligotrophicumSNG- Bansal et al. [85], Sutherland [129], Resenberg et al. [133] 

BradyrhizobiumyuanmingenseSNG- Bansal et al. [85], Sutherland [129] 

BrenneriagoodwiniiSPG- Tomulescu et al. [74], Liu et al. [134], Xu et al. [135] 

Clostridium acetobutylicumSG+ Gao et al. [136], Dahech et al. [137] 

Corynebacterium laevaniformansSG+ Han [91], Dias and Bhat [138] 

Corynebacterium beticolaSHG+ Tomulescu et al. [74], Han [87], Chen et al [139] 

Erwinia amylovoraSPG+ Tomulescu et al. [74], Wuerges et al. [140], Gross et al. [141] 

Erwinia herbicolaSPG- Tomulescu et al. [74], Benigar et al. [122], Keith et al. [142], Keith et 
al. [143] 

Geobacillus stearothermophilusSG+ Inthanovong et al. [144], Li et al. [145] 

GluconobacteraquatilisSPG- Tomulescu et al. [74], Ua-AraK et al. [146], De Muynck et al. [147] 

GluconobactercerinusSPG- Tomulescu et al. [74], De Muynck et al. [147], Jakob et al. [148] 

GluconobacteroxydansSG- Velazquez-Hernandez et al. [149], Park et al. [150] 

GluconoacetobacterdiaztrophicusSNG- Han [91], Serrato et al. [151], Banguela et al. [152] 

GluconacetobacterxylinusSG- Jakob et al. [148], Kommann et al. [153], 

HalomonassmyrnensisSG- Sarilmiser et al. [59], Kazak et al. [ 154], Poli et al. [155] 

KozakiabaliensisSWG- Ua-AraK et al. [146], Brandt et al. [156] 

Lactobacillus fermentumSWG+ Dutta et al. [157], Badel et al. [158], Heinemann et al. [159], Galle 
and Avendt [160] 

Lactobacillus gasseriSWG+ Anwar et al. [161], Diez-Municio et al. [162] 

Lactobacillus reuteriSWG+ Tomulescu et al. [74], Sims et al. [163], van Hijum et al. [164], 
Kaditzky and Vogel [165], Ni et al. [166] 

Lactobacillus sanfranciscensisSWG+ Bansal et al. [85], Tieking et al. [167], 

LeuconostoccitreumSWG+ Tomulescu et al. [74], Han et al. [168], Ortiz-Soto et al. [169], 
Bounaix et al. [170] 

LeuconostocmesenteroidesSWG+ Han [81], Xu et al. [171] 

MesorhizobiumalhagiSNG- Bansal et al. [85], Liu et al. [172] 

MesorhizobiumamorphaeSNG- Bansal et al. [85], Priest and Goodfellow [173], Kimbrel [174] 

MesorhizobiumaustralicumSNG- Bansal et al. [85], Priest and Goodfellow [173], Reeve et al. [175] 

MesorhizobiumciceriSNG- Bansal et al. [85], Priest and Goodfellow [173], Das et al. [176] 

MesorhizobiumhuakuiiSNG- Bansal et al. [85], Priest and Goodfellow [173], Chen et al. [177] 

MesorhizobiumjapanicumSNG- Bansal et al. [85], Priest and Goodfellow [173] 

Mesorhizobium loti SNG- Bansal et al. [85], Priest and Goodfellow [173], Kawaharada et al. [ 
178], Kelly et al. [179] 
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MesorhizobiummediterraneumSNG- Bansal et al. [85], Priest and Goodfellow [173], Ray [180] 

MesorhizobiumplurifariumSNG- Bansal et al. [85], Priest and Goodfellow [173] 

MicbacteriumlaevaniformansSG+ Bansal et al. [85], Han [91], Bae et al. [181] 

OdontomycesviscosusSWHAG+ Han [91], Krichevsky et al. [182] 

PaenibacillusbovisSG+ Gozalez-Garcinuno [84], Xu et al. [183], Hang et al. [184]. 
PediococcusacidilacticiSHG+ Youssef et al [62], Petrov and Petrova. [185] 

PhytomonaspruniSPG+ Han [91], Haworth and Stacey [186], Lyne et al. [187] 

Pseudomonas aureofaciensSPG- Tomulescu et al. [74], Fuchs [188], Alamäe et al. [189] 

Pseudomonas brassicacearumSPG+ Tomulescu et al. [74], Alamäe et al. [190], Al Qysi [191] 

PseudonomaschlororaphisSG- Tomulescu et al. [74], Fuchs [188], Alamäe et al. [189] 

Pseudonomas fluorescens SG- Jathore et al. [58], Tomulescu et al. [74], Bansal et al [85], Fuchs 
[188], Alamäe et al. [189] 

Pseudomonas syringaeSPG- Tomulescu et al. [74], Alamäe et al. [189],Kasapis et al. [191], Laue 
et al. [192] 

RahnellaaquatilisSWHG- Yoo et al. [193], Kim et al. [194], Kim et al. [195] 

Rhizobium leguminosarumSNG- Bansal et al. [85], Priest and Goodfellow [173]. Karunaratne [196], 
Tikhonovich et al. [197] 

RhisobiummelilotiSNG- Bansal et al. [85], Priest and Goodfellow [173], Tikhonovich et al. 
[197] 

RhisobiumraiobacterSNG- Bansal et al. [85], Priest and Goodfellow [173], Tikhonovich et al . 
[197] 

RothiadentocariosaSWHG+ Tomulescu et al. [74], Han [91], Lesher and Gerencser [198], Willner 
et al. [199], Hill [200] 

Saccharomyces cerevisiaeSG- Tomulescu et al. [74], Bansal et al. [85], Franken et al. [201], Elorza 
et al. [202] 

Streptococcus mutansSHG+ Han [91], Yoo et al. [203], Ebisu et al. [203] 

StreptocuccussalivariusWHG+ Tomulescu et al. [74], Fuchs [188], Yoo et al. [193], Ebisu et al. 
[204], Newbrun et al. [204] 

Xanthomonas axonopodisSPG- Tomulescu et al. [74], Han [91], Yoo et al. [193], Moosavi-Nasab et 
al. [205] 

ZymomonasmobilisSG- Silbir et al. [57], Tomulescu et al. [74], Bansal et al. [88], Benigar et 
al. [122], Abdul Razack [127], Yoo et al. [193], Vigants et al. [206], 
Calazans et al. [207], Bekers et al. [208], Melo et al. [209], 
Ananthalakshmy and Gunasekaran [210], Shaheen et al. [211], 
Santos et al [212 ] , De Oliveira et al. [213] 

A = Animal Pathogen 
G+ = Gram Positive 
G- = Gram Negative
H = Human Pathogen
N = Nitrogen Fixing
P = Plant Pathogen
S = Soil microorganism
W = Water microorganism

beef extract provides vitamins, carbohydrates, salts and other 
organic nitrogen compounds. An amount of 6.5 g of the 
nutrient broth was added to two Erlenmeyer flasks, each 
containing 500 ml distilled deionized water. Each flask was 

capped and thoroughly mixed. The flasks were placed in an 
autoclave (Tabletop Autoclave, Tuttnauer 2340M, Alpha 
Scientific, Vancouver, British Columbia, Canada) at a 
temperature of 121°C and a pressure of 103 KPa for 20 min 
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to sterilize the media. The flasks were left to cool down. One 
flask was inoculated aseptically with Azotobacter 
chroococum while the other flask was inoculated aseptically 
with Lactobacillus fermentum. The two cultures were grown 
on a controlled environment laboratory shaker (MaxQTM 
4000 Benchtop Orbital Shaker, Thermo Fisher Scientific, 
Montreal, Quebec, Canada) at room temperature (21°C) for 
24 h. 

Table 4. Scientific classification of Azotobacter 
chroococumand Lactobacillus fermentum [214-216]. 

Taxonomy Azotobacter 
chroococum 

Lactobacillus 
fermentum 

Kingdom Bacteria Bacteria 

Phylum Proteobacteria Firmicutes 

Class Gammaproteobacteria Baccilli 

Order Pseudomonadales Lactobacillales 

Family Pseudomonadaceae Lactobacillaceae 

Genus Azotobacter Lactobacillus 

Species Azotobacterchroococum Lactobacillus 
fermentum 

The cell number was determined according to the procedure 
described by Ghaly and Mahmoud [217]. 

Culture propagation and polymer production in 
laboratory 

The two cultures were then grown on liquid growth medium 
containing sucrose. The liquid growth medium consisted of 
50.0 g sucrose, 2.5 g tryptone, 2.5 g K2 HPO4 and 5.9 g yeast 
extract per liter of distilled deionized water. The media were 
transferred to several 1 L Erlenmeyer flasks and sterilized in 
an autoclave (Tabletop Autoclave, Tuttnauer 2340M, Alpha 
Scientific, Vancouver, British Columbia, Canada) at a 
temperature of 121°C and a pressure of 103 KPa for 20 min. 
Each microbe was transferred aseptically from the nutrient 
broth to ten 750 mL Erlenmeyer flasks, each having 500 ml 
of sterilized liquid media. Each flask was inoculated with 
10% (v/v) of the homogeneous mixture of the nutrient broth 
culture. The cultures were grown in a controlled 
environment laboratory shaker ((MaxQTM 4000 Benchtop 
Orbital Shaker, Thermo Fisher Scientific, Montreal, Quebec, 
Canada) at room temperature (21°C) for 5 days. Samples 
were drawn from the flasks for biomass, sucrose and 
polysaccharide determination. Sampling was done every 4 h 
during the first 24 h every 6 h during the period of 24-72 h 
and then every 12 h until the end of the 5 days. The cell 
biomass was determined according to the procedure 
described by Ghaly and Mahmoud [218]. The 
polysaccharide concentration analysis was determined 
according to the procedure described by Ramsay [219]. The 

sucrose concentration was determined according to the 
procedure described by Borji et al. [220]. 

Polymer production in soil (bio-cementing and bio-
sealing) 

The setup for testing sandy soil bio-cementation and bio-
sealing is shown in Figure 7. It consisted of 5 infiltration 
soil columns, each was constructed a PVC cylinder of 7.5 
cm diameter and 40 cm height, a plastic filtration funnel of 
7.5 cm diameter and a 1 L flask. The funnel was placed on 
the top of the flask and a filter bad was placed inside the 
funnel. This filter bad has a pore size smaller the that of the 
smallest sand particles (does not allow the soil particles to 
pass through). The cylinder was connected to the funnel and 
sealed together. One kg of the sterilized soil was placed in 
the cylinder and packed to achieve field density. This was 
done to simulate the soil root zone.  

The application of microbial culture and water was carried 
out as shown in Table 6. 400 ml of microbial culture of 
Azotobacte rchroococcum were added on day 1 to each 
column. On Day 3, 400 ml of the diluted microbial culture 
(each soil column received different concentration of the 
microbial) were added to the columns. 

On day 5, the moisture content and pH were measured. The 
moisture content was measured using a portable soil 
moisture measurement meter (TOR 150 Soil Moisture 
Meter, Edaphic Scientific, Moorabbin, Victoria, Australia). 
The pH was measured using a portable pH meter (Hanna 
H199121 Digital pH Meter, ITM Instruments Inc, Sainte 
Anne de Bellevue, Quebec, Canada). Then, 400 ml of water 
were added to each column and the leachate collected in the 
flasks were measured after 12, 24 and 48 h from addition of 
water. Finally, the water holding capacity was determined. 

After completing the experiment with Azotobacter 
chroococcum, the component of each column were 
dismantled and washed thoroughly with water and 
disinfected with alcohol. They were the sterilized in an 
autoclave (Tabletop Autoclave, Tuttnauer 2340M, Alpha 
Scientific, Vancouver, British Columbia, Canada) at a 
temperature of 121°C and a pressure of 103 KPa for 20 min. 
The 5 columns were reassembled again. The same 
experimental procedure was followed with Lactobacillus 
fermentum. 

RESULTS AND DISCUSION 

Soil characteristics 

The result showed that the sandy soil used in this study had a 
particle density of 2.58 g/cm3, a bulk density of 1.6 
g/cm3and a porosity of 37.98 %. 
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Table 5. The biological and biochemical characteristics of Azotobacter chroococum and Lactobacillus fermentum [74,101-
103,157-160]. 

Parameter Azotobacter chroococum Lactobacillus fermentum 

Habitats Neutral to alkaline soils, aquatic 
environments and on some plants. 

Fermented milk products, sourdough, 
fermenting plant materials, faeces and 
ewage 

Motility Free-living microbes Non motile 

Staining Gram negative Gram positive 

Bacteria Shape Oval or spherical Rod-shaped 

Bacteria Size 0.6 - 0.9 μm by 1.5 - 3.0 μm 0.5 - 0.8 μm by 2 - 9 μm 

Spore Shape A closed sac containing a cluster of 
cells 

Non spore forming 

Oxygen Obligate aerobes Facultative anaerobes 

Temperature Optimum growth at 20 - 33oC Optimum growth at 20 - 30oC 

pH 4.8 - 8.5 with optimum at 7.0-7.5 Strong pH tolerance (pH 3) 

Tolerance to Salt Good growth up to 6% NaCl Ferment sugars up to 6-8% NaCl 

Growth on Agar Large spreading flat, slimy colonies 
with a diameter of 5-10 mm and a dark 
brown to green color 

Colonies on agar media are usually 2-5 
micrometers, convex, entire, opaque, and 
without pigment 

Substrate Wide variety of carbohydrates and 
organic metallic salts with mannitol as 
a source of energy 

Ferment ribose, galactose, D-glucose, D-
fructose, D-mannose, maltose, lactose, 
melibiose, saccharose, D-raffinose, D-
tagatose and gluconate. 

Applications Fixing nitrogen (bio-fertilizer) 
Production of growth hormones 
Production of polysaccharides 

Potential probiotic 
Production of lactic acid 
Production of polysaccharides 

The fraction of the soil collected from each sieve as a 
percentage of the original soil weight is shown in Table 7. 
The particle size varied from 0.150 to 2.000 mm. Most of 
the soil particles had a diameter in the range of 0.425-0.850 
mm (Figure 8). All sand particles have a diameter within the 
range 0.05 mm and 2.00, all silt particles have a diameter 
within the range 0.002 mm and 0.05 mm while all clay 
particles are less than 0.002 mm in diameter as shown in 
Figure 9 [221]. 

The results indicated that the soil used in this study is typical 
sandy soil with a rough texture and free of silt and clay. This 
soil has a loose texture resulting in wind erosion, low 
organic matter, low nutrient content, high infiltration rate, 
low water holding capacity, high temperature resulting in 
faster plant growth, high aeration rate resulting in faster 
decomposition of organic matter [222]. For a sustainable 
agriculture, it is important to consider applying 
biotechnological techniques for building an adequate soil 
structure in these types of soils as well as water conservation 
by adopting new irrigation technology. Figure 6. Samples of Azotobacter chroococum and 

Lactobacillus fermentum. 
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Figure 7. Bio-cementation and bio-sealing testing 

Bacterial growth and levan production in bioreactor 

The bacteria Azotobacter chroococcum and Lactobacillus 
fermentum were first grown on a sucrose in shake flasks to 
produce levan. The plate count test performed on the media 
obtained from the shake flasks containing nutrient broth 
revealed that there was a count of approximately 7.29 x 108 
microbial cells/mL for Azotobacter chroococcum and 8.23 x 
108 microbial cells/mL for Lactobacillus fermentum. The 
result of batch culture propagation of Azotobacter 
chroococcum and Lactobacillus fermentum in the shake 
flasksare presented in Table 8. The maximum biomass 
concentrationwas3.6 g/L and 3.0 g/L after 22 h and 26 h for 
Azotobacter chroococcum and 

Table 6. Microbial culture and water applications. 

Time Application 

Day 1 Units 1-5    400 ml microbial culture 

Day 3 Unit 1 (control):    400 ml water+0 ml microbial culture 

Unit 2 (treatment): 300 ml water+100 ml microbial culture 

Unit 3 (treatment): 200 ml water+200 ml microbial culture 

Unit 4 (treatment): 100 ml water+300 ml microbial culture 

Unit 5 (treatment):  0 ml water+400 ml microbial culture 

Day 5 (Low moisture 
content) 

Units 1-5    400 ml water  

Lactobacillus fermentum, respectively. The concentration of 
sucrose decreased reaching 1.6 g/L and 1.5 g/L after 56 h 
and 61 for Azotobacter chroococcumand Lactobacillus 
fermentum, respectively. With the depletion of sucrose, the 
bacterial cell mass decreased reaching 0.16 g/L and 0.13 g/ 
L after 68 h and 72 h for Azotobacter chroococcumand 
Lactobacillus fermentum, respectively.  The bacteria 
produced the enzyme levansucrase which converts the 
soluble sucrose into the polysaccharide ß-D fructoside 
(levan) and glucose. The production of levan reached a 
maximum of 14 g/L and 17 g/L for Azotobacter 
chroococcumand Lactobacillus fermentum, respectively.  

During the fermentation process, the bacteria utilize sucrose 
for production of levan and for cell maintenance and growth. 
The following equations describe product formation, 
respiration and energy production and growth and 
reproduction. 

(a) Respiration and energy production

 ΔOH11CO12O12)OH(C 222112212

Cells

sucrose

    (4)  

Table 7. Soil Particle size distribution. 

Sieve  Diameter Retained  Soil Passing 

Number (mm) (Kg) (%) (%) 

10 2 48 9.6 90.4 
20 0.85 105 21 69.4 
40 0.425 199.5 39.6 29.8 
60 0.25 137 27.4 2.4 
100 0.15 12 2.4 0 

Pan 0.075 
 Soil Sample = 500 g 
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Figure 8. Sand particle sizes and percentage of particles passing through sieves. 

(b) Growth and reproduction

  H12OH31NOHC12NH12)OH(C5 22754112212

cells

Cells

sucrose

 (5) 

(c) Product formation

glucoselevan

selevansucra

sucrose

)OH(C30)OH(C)OH(C30 612651066112212    (6) 

Equation (4), (5) and (6) can be combined to yield the following equation: 








HCOOH

NOHCOHCOHCNHOOHC

121242

12)(30)(1212)(36

22

275612630510642112212

(7)
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Figure 9. Sand, silt and clay particle sizes [217]. 

From equation (7), it appears that the theoretical levan yield 
is 0.395 g levan/g sucrose and the theoretical cell yield is 
0.130 g cells/gsucrose. In this study, the levan yield was 
0.248 glevan/g sucrose (62.78% of theoretical yield) and 
0.371 g levan/g sucrose (93.92% of theoretical yield) for 
Azotobacter chroococcum and Lactobacillus fermentum, 
respectively. The cell yield was 0.074 g cell/g sucrose (47.69 
% of theoretical yield) and 0.062 gcell/g sucrose (56.92 % of 
theoretical yield). The results showed that Lactobacillus 
fermentum was mor efficient in converting sucrose to levan 
than Azotobacter chroococcum. However, Azotobacter 
chroococcum produced more bacterial biomass (g cells/g 
sucrose) than Lactobacillus fermentum. This may be due to 
the fact thatAzotobacte rchroococcum is a nitrogen fixing 
microorganism, a process that require organic matter. Thus, 
some of the sucrose may have been utilized in nitrogen 
fixation. 

The results showed that it is feasible to use growing cultures 
of Azotobacter chroococcum and Lactobacillus fermentum. 
From the biological and biochemical characteristics of the 
Azotobacter chroococcum and Lactobacillus fermentum, it 
appears that the organisms can produce levan from sucrose 
under most field and soil conditions and they should be able 
to compete with most common soil microbial species. 

The polysaccharide (levan) produced in this study was non-
viscous and water insoluble.  The viscosity of the culture 
broth was the same as that of water.  The polymer was a 
non-transparent suspension and was found to deflect visible 
light. The polymer can be used as a plugging agent to plug 
the pores of high permeability soils. Microbial levan 
contains up to 3 million residues compared to plant levan 
which contains about 100 residues [51]. The polysaccharide 
levan (C6H10O5)n consists of fructose monomers linked 
mainly by β(2→6) linkages [91]. 

Bio-cementation and bi-sealing 

The moisture content and pH measurements taken on day 5 
before the application of 400 ml water to each of the soil 
bio-cementation and bio-clogging columns are presented in 
Table 9. The results indicated that the moisture content of 
the soils receiving the bacterial culture of Azotobacter 
chroococcum (22.3%) was lower than that of the soils 
receiving the bacterial culture of Lactobacillus fermentum 
(25.3%). The soils designated as control (received no 
bacterial treatment) had lower moisture content than the 
soils treated with both bacterial cultures. The moisture 
content of the soils receiving the bacterial culture of 
Azotobacter chroococcum was higher than that of the control 
by13.78% while the moisture content of the soil receiving 
the bacterial culture Lactobacillus fermentum was higher 
than that of the control by 29.59%. However, increasing the 
concentration of the bacteria cultures that were added on day 
3 did not have any significant effect on the moisture content. 
There was also no change in the soil pH as a result of 
addition of bacterial cultures or varying the concentration of 
bacterial culture added on day 3. 

The volumes of leachates collected from the soil bio-
cementation and bio-clogging experiment after the addition  
of 400 ml water for Azotobacter chroococcum and 
Lactobacillus fermentum are shown in Table 10. 

The results showed that increasing the concentration of 
bacteria from 25 to 100% in the bacterial culture added on 
day 3 did not have any significant effect on the amount of 
leachate collect for both bacteria. However, the leachates 
collected from the soils receiving Azotobacter chroococcum 
(205 ml) were much larger than those collected from the 
soils receiving Lactobacillus fermentum (105 ml). Also, the 
leachates collected from the control (received no bacterial 
treatment) were much larger (310 ml) than both soils treated 
with both bacterial cultures. In other words, 90 ml (22.5%), 
190 ml (47.5%) and 295 ml (73.75%) of the added water on 
day 5 were retained by the control, the soil receiving 
Azotobacter chroococcum and the soil receiving 
Lactobacillus fermentum, respectively. This amount to a 
water conservation of 100 ml (25%) and 205 ml (51.25%) 
for the soil receiving Azotobacter chroococcum and the soil 
receiving Lactobacillus fermentum, respectively. 

The results obtained from the study showed that it is feasible 
to use growing cultures of Azotobacter chroococcum and 
Lactobacillus fermentum to produce a water insoluble levan. 
The polymer can be used as a plugging agent to plug the 
pores of the high permeability sandy soils. Upon production 
of levan, pore spaces would be reduced and, hence, the 
hydraulic conductivity would be substantially reduced. In 
addition to producing levan, these bacteria also produce 
gelatinous agents and elemental compounds that cause soil 
bio-cementation as shown in Figure 12. 
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Table 8. Biomass andlevan and conversion efficiencies. 

Parameter Azotobacter chroococcum Lactobacillus fermentum 

Cell Count (Cells/mL) 8.23 x 108 7.29 x 108 

Maximum Biomass (g /L) 3.6 3 

Time to reach Maximum Biomass (h) 22 26 

Minimum Biomass (g /L) 0.16 0.13 

Time to reach Minimum Biomass (h) 68 72 

Starting Sucrose (g/L) 50 50 

Final Sucrose (g/L) 1.6 1.5 

Time to Reach Final Sucrose (h) 56 61 

Maximum Levan (g/L) 14 17 

Time to Reach Maximum Levan 24 28 

Theoretical Levan Yield (g levan/g 
sucrose) 

0.395 0.395 

Experimental Levan Yield (g levan/g 
sucrose) 

0.248 0.371 

Levan Production Efficiency (%) 62.78 93.92 

Theoretical Biomass Yield (g cells/g 
sucrose) 

0.13 0.13 

Experimental BiomassYield (g cells/g 
sucrose 

0.074 0.062 

Biomass Production Efficiency (%) 47.69 56.92 

Table 9. Soil moisture content and pH before the addition of water on day 5. 

Parameter Bacteria Value 

Control Treatment 2 Treatment 3 Treatment 4 Treatment 5 

Moisture 
Content 

 (%) 

Azotobacterchroococcum 19.6 22.4 22.3 22.2 22.3 

Lactobacillus 
fermentum 

19.7 25.4 25.4 25.3 25.4 

pH Azotobacterchroococcum 8.1 8.3 8.2 8.3 8.2 

Lactobacillus 
fermentum 

8.1 8.2 8,3 8.3 8.2 

The bacteria could be grown in the laboratory either in the 
non-polysaccharide producing mode or in the polysaccharide 
producing mode. The first would permit distribution of the 
bacteria to the lower soil layers but would delay the 
production of the polysaccharide due to the extension of the 
lag period required to produce the enzyme (levansucrase).  

Improving soil properties using biological techniques such 
as gleization, bio-grouting or bio-cementation and bio-
plugging or bio-sealing has been reported by many authors. 
Kumariad and Xiang [33] stated that bio-grout is an 
excellent technique for reducing the permeability of porous 
soils and improving their mechanical properties. Mujab et al. 
[34] reported that bio-cementation binds soil particles

together leading to increased soil strength and stiffness 
against wind erosion. Ivanove and Chu [36] evaluated the 
application of bio-cementation and bi-clogging techniques 
for reducing the porosity and hydraulic conductivity of soils 
and found facultative and microaerophilic bacteria to be the 
most suitable organisms for these techniques. McConkey et 
al. [40] applied an enhanced gleization technique into 
irrigation canal and reduced water seepage by 30%. Ghaly 
[42] developed an enhanced bio-sealing mechanism for
earthen manure storage using levan producing
microorganism and reported that the infiltration rate was
affected by the soil type and was correlated to the percentage
of sand in the soil. Knapenetal [47] studied the effect of
microbiotic crust on soil erodibility by wind and reported a
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37% reduction in soil detachment. Ghaly et al. [49] studied 
the plugging effect of levan produced by C in earthen 
manure storage and found the bacteria converted sucrose 
into levan under field condition and the exopolysaccharide 
plugged the pores of a highly porous soil. Stewart and Folger 
[50] used polymer producing bacteria to modify soil profiles
for enhanced oil recovery and reported that the bacteria
utilized sucrose to produce exopolymer which created
plugged regions of the porous media leading to enhanced oil
recovery. Ramsay et al. [54] used Bacillus licheniformis to
produce water insoluble levan that was used as a selective
plugging agent in microbial enhanced oil recovery under a

temperature of 55oC, a pH between 6 and 9, a pressure less 
than sooata and a salt concentration of 4%. 

CONCLUSION 

The result showed that the sandy soil used in this study had a 
particle density of 2.58 g/cm3, a bulk density of 1.6 
g/cm3and a porosity of 37.98 %. The particle size varied 
from 0.150 to 2.000 mm with most of the soil particles 
having a diameter in the range of 0.425-0.850 mm indicating 
that the soil was free of silt and clay. This soil has a loose 
texture, low organic matter, low nutrient content, high 
infiltration rate, low water holding capacity. 

Table 10. Leachates collected after the addition of 400ml water on day 5. 

Time 
(h) 

Bacteria Leachate (ml) 

Control Treatment 2 Treatment 3 Treatment 4 Treatment 5 

12 Azotobacterchroococcum 309 205 205 205 205 

Lactobacillus fermentum 310 105 104 105 104 

24 Azotobacterchroococcum 310 206 205 205 205 
 

Lactobacillus fermentum 311 105 105 105 104 

48 Azotobacterchroococcum 310 206 205 205 204 

Lactobacillus fermentum 311 105 108 105 105 

Figure 10. Bio-cementation and clogging of soil. 

Azotobacter chroococcum are capable of producing levan 
from sucrose and have ability to fix molecular nitrogen and 
produce growth hormones, and therefore increase the soil 
fertility and stimulate plant growth, Lactobacillus fermentum 
bacteria are a levan producing bacteria. The viscosity of the 
culture broth was the same as that of water. The polymer can 

be used as a plugging agent to plug the pores of high 
permeability soils. The levan yield was 0.248 glevan/g 
sucrose (62.78% of theoretical yield) and 0.371 glevan/g 
sucrose (93.92% of theoretical yield) for Azotobacter 
chroococcum and Lactobacillus fermentum, respectively. 
The cell yield was 0.074 g cell/g sucrose (47.69 % of 
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theoretical yield) and 0.062 g cell/g sucrose (56.92 % of 
theoretical yield). 

The results showed that increasing the concentration of 
bacteria had not significant effect on the amount of leachate 
collect for both bacteria. However, the leachates collected 
from the soils receiving Azotobacter chroococcum were 
much larger than those collected from the soils receiving 
Lactobacillus fermentum. Also, the leachates collected from 
the control (received no bacterial treatment) were much 
larger than soils treated with both bacterial cultures. These 
microorganisms can be used together for production of levan 
from sucrose, fixing nitrogen in soil and producing growth 
hormones, thereby improving the water holding capacity of 
the soil and enhancing its nutrient content and stimulating 
plant growth. 
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